Tom Carrard, Elham Nourani, Lukas Jansing, Tim Zimmermann, Petra Sumasgutner, Matthias Tschumi, David Jenny, Martin Wikelski, Kamran Safi, Michael Sprenger, Martina Scacco
{"title":"金雕经常利用重力波翱翔:来自高分辨率天气数据的新见解。","authors":"Tom Carrard, Elham Nourani, Lukas Jansing, Tim Zimmermann, Petra Sumasgutner, Matthias Tschumi, David Jenny, Martin Wikelski, Kamran Safi, Michael Sprenger, Martina Scacco","doi":"10.1098/rsif.2024.0891","DOIUrl":null,"url":null,"abstract":"<p><p>Soaring flight allows birds to reduce the metabolic cost of flight by harnessing energy from the atmosphere. The study of soaring behaviour has been significantly constrained by the low resolution of available atmospheric data, limiting our ability to accurately describe the conditions enabling soaring and its adaptability to different updraught types. For instance, while the use of thermals and orographic lifting updraughts are well described in the literature, the role of gravity waves has remained largely unexplored. Advancements in high-resolution atmospheric modelling, with hourly output available at the kilometre-scale grid spacing, offer new opportunities to investigate the flexibility of soaring flight in response to complex atmospheric dynamics, including gravity waves. In this study, we used a combination of a high-resolution atmospheric analysis and high-resolution global positioning system tracking data to characterize the updraught sources used by golden eagles, <i>Aquila chrysaetos</i>, in the European Alps. Our findings reveal that golden eagles repeatedly used gravity waves, with at least 19% of the inspected soaring segments involving this updraught source. Thermals remained the primary energy source for soaring, but during winter, when thermals were more scarce, the quasi-totality of soaring events were powered by gravity waves or orographic lifting. Our results provide a new perspective on the environmental energy available to soaring birds and on landscape connectivity in topographically complex regions.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240891"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134756/pdf/","citationCount":"0","resultStr":"{\"title\":\"Golden eagles regularly use gravity waves to soar: new insights from high-resolution weather data.\",\"authors\":\"Tom Carrard, Elham Nourani, Lukas Jansing, Tim Zimmermann, Petra Sumasgutner, Matthias Tschumi, David Jenny, Martin Wikelski, Kamran Safi, Michael Sprenger, Martina Scacco\",\"doi\":\"10.1098/rsif.2024.0891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soaring flight allows birds to reduce the metabolic cost of flight by harnessing energy from the atmosphere. The study of soaring behaviour has been significantly constrained by the low resolution of available atmospheric data, limiting our ability to accurately describe the conditions enabling soaring and its adaptability to different updraught types. For instance, while the use of thermals and orographic lifting updraughts are well described in the literature, the role of gravity waves has remained largely unexplored. Advancements in high-resolution atmospheric modelling, with hourly output available at the kilometre-scale grid spacing, offer new opportunities to investigate the flexibility of soaring flight in response to complex atmospheric dynamics, including gravity waves. In this study, we used a combination of a high-resolution atmospheric analysis and high-resolution global positioning system tracking data to characterize the updraught sources used by golden eagles, <i>Aquila chrysaetos</i>, in the European Alps. Our findings reveal that golden eagles repeatedly used gravity waves, with at least 19% of the inspected soaring segments involving this updraught source. Thermals remained the primary energy source for soaring, but during winter, when thermals were more scarce, the quasi-totality of soaring events were powered by gravity waves or orographic lifting. Our results provide a new perspective on the environmental energy available to soaring birds and on landscape connectivity in topographically complex regions.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 227\",\"pages\":\"20240891\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134756/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0891\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0891","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Golden eagles regularly use gravity waves to soar: new insights from high-resolution weather data.
Soaring flight allows birds to reduce the metabolic cost of flight by harnessing energy from the atmosphere. The study of soaring behaviour has been significantly constrained by the low resolution of available atmospheric data, limiting our ability to accurately describe the conditions enabling soaring and its adaptability to different updraught types. For instance, while the use of thermals and orographic lifting updraughts are well described in the literature, the role of gravity waves has remained largely unexplored. Advancements in high-resolution atmospheric modelling, with hourly output available at the kilometre-scale grid spacing, offer new opportunities to investigate the flexibility of soaring flight in response to complex atmospheric dynamics, including gravity waves. In this study, we used a combination of a high-resolution atmospheric analysis and high-resolution global positioning system tracking data to characterize the updraught sources used by golden eagles, Aquila chrysaetos, in the European Alps. Our findings reveal that golden eagles repeatedly used gravity waves, with at least 19% of the inspected soaring segments involving this updraught source. Thermals remained the primary energy source for soaring, but during winter, when thermals were more scarce, the quasi-totality of soaring events were powered by gravity waves or orographic lifting. Our results provide a new perspective on the environmental energy available to soaring birds and on landscape connectivity in topographically complex regions.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.