利用药物计量学中的大型语言模型:NONMEM输出解释和模拟能力的评估。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Hwa Jun Cha, Kyuyeon Choe, Euibeom Shin, Murali Ramanathan, Sungpil Han
{"title":"利用药物计量学中的大型语言模型:NONMEM输出解释和模拟能力的评估。","authors":"Hwa Jun Cha, Kyuyeon Choe, Euibeom Shin, Murali Ramanathan, Sungpil Han","doi":"10.1007/s10928-025-09982-7","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in large language models (LLMs) have suggested their potential utility for diverse pharmacometrics tasks. This study investigated the performance of LLM for generating structure diagrams, publication-ready tables, analysis reports, and conducting simulations using output files from pharmacometrics models. Forty-four NONMEM output files were obtained from the GitHub software repository. The performance of Claude 3.5 Sonnet (Claude) and ChatGPT 4o was compared with two other candidate LLMs: Gemini 1.5 Pro and Llama 3.2. Prompt engineering was conducted for Claude for pharmacometrics tasks such as generating model structure diagrams, parameter tables, and analysis reports. Simulations were conducted using ChatGPT. Claude Artifacts was used to visualize model structure diagrams, parameter tables, and analysis reports. A web-based R Shiny application was implemented to provide an accessible interface for automating pharmacometric model structure diagrams, parameter tables, and analysis reports tasks. Claude was selected for investigation following performance comparisons with ChatGPT 4o, Gemini 1.5 Pro, and Llama on model structure diagram and parameter table generation tasks. Claude successfully generated the model structure diagrams for 40 (90.9%) of the 44 NONMEM output files with the initial prompts, and the remaining were resolved with an additional prompt. Claude consistently generated accurate parameter summary tables and succinct model analysis reports. Modest variability in model structure diagrams generated for replicate prompts was identified. ChatGPT demonstrated simulation capabilities but revealed limitations with complex PK/PD models. LLMs have the potential to enhance key pharmacometrics modeling tasks. However, expert review of the results generated is essential.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"34"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging large language models in pharmacometrics: evaluation of NONMEM output interpretation and simulation capabilities.\",\"authors\":\"Hwa Jun Cha, Kyuyeon Choe, Euibeom Shin, Murali Ramanathan, Sungpil Han\",\"doi\":\"10.1007/s10928-025-09982-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in large language models (LLMs) have suggested their potential utility for diverse pharmacometrics tasks. This study investigated the performance of LLM for generating structure diagrams, publication-ready tables, analysis reports, and conducting simulations using output files from pharmacometrics models. Forty-four NONMEM output files were obtained from the GitHub software repository. The performance of Claude 3.5 Sonnet (Claude) and ChatGPT 4o was compared with two other candidate LLMs: Gemini 1.5 Pro and Llama 3.2. Prompt engineering was conducted for Claude for pharmacometrics tasks such as generating model structure diagrams, parameter tables, and analysis reports. Simulations were conducted using ChatGPT. Claude Artifacts was used to visualize model structure diagrams, parameter tables, and analysis reports. A web-based R Shiny application was implemented to provide an accessible interface for automating pharmacometric model structure diagrams, parameter tables, and analysis reports tasks. Claude was selected for investigation following performance comparisons with ChatGPT 4o, Gemini 1.5 Pro, and Llama on model structure diagram and parameter table generation tasks. Claude successfully generated the model structure diagrams for 40 (90.9%) of the 44 NONMEM output files with the initial prompts, and the remaining were resolved with an additional prompt. Claude consistently generated accurate parameter summary tables and succinct model analysis reports. Modest variability in model structure diagrams generated for replicate prompts was identified. ChatGPT demonstrated simulation capabilities but revealed limitations with complex PK/PD models. LLMs have the potential to enhance key pharmacometrics modeling tasks. However, expert review of the results generated is essential.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 3\",\"pages\":\"34\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09982-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09982-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)的进步表明了它们在各种药物计量学任务中的潜在效用。本研究调查了LLM在生成结构图、出版就绪表、分析报告以及使用药物计量学模型的输出文件进行模拟方面的性能。从GitHub软件库中获得44个NONMEM输出文件。将Claude 3.5 Sonnet (Claude)和ChatGPT 40的性能与另外两个候选llm (Gemini 1.5 Pro和Llama 3.2)进行比较。Claude对药物计量学任务进行了即时工程,如生成模型结构图、参数表和分析报告。使用ChatGPT进行仿真。Claude Artifacts用于可视化模型结构图、参数表和分析报告。实现了基于web的R Shiny应用程序,为自动化药物测量模型结构图、参数表和分析报告任务提供了一个可访问的界面。通过与ChatGPT 40、Gemini 1.5 Pro和Llama在模型结构图和参数表生成任务上的性能比较,选择Claude进行调查。Claude使用初始提示成功地为44个NONMEM输出文件中的40个(90.9%)生成了模型结构图,其余的使用附加提示解决了问题。克劳德始终如一地生成准确的参数汇总表和简洁的模型分析报告。确定了为复制提示生成的模型结构图中的适度可变性。ChatGPT展示了仿真能力,但揭示了复杂PK/PD模型的局限性。llm具有增强关键药物计量学建模任务的潜力。然而,对产生的结果进行专家审查是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging large language models in pharmacometrics: evaluation of NONMEM output interpretation and simulation capabilities.

Advancements in large language models (LLMs) have suggested their potential utility for diverse pharmacometrics tasks. This study investigated the performance of LLM for generating structure diagrams, publication-ready tables, analysis reports, and conducting simulations using output files from pharmacometrics models. Forty-four NONMEM output files were obtained from the GitHub software repository. The performance of Claude 3.5 Sonnet (Claude) and ChatGPT 4o was compared with two other candidate LLMs: Gemini 1.5 Pro and Llama 3.2. Prompt engineering was conducted for Claude for pharmacometrics tasks such as generating model structure diagrams, parameter tables, and analysis reports. Simulations were conducted using ChatGPT. Claude Artifacts was used to visualize model structure diagrams, parameter tables, and analysis reports. A web-based R Shiny application was implemented to provide an accessible interface for automating pharmacometric model structure diagrams, parameter tables, and analysis reports tasks. Claude was selected for investigation following performance comparisons with ChatGPT 4o, Gemini 1.5 Pro, and Llama on model structure diagram and parameter table generation tasks. Claude successfully generated the model structure diagrams for 40 (90.9%) of the 44 NONMEM output files with the initial prompts, and the remaining were resolved with an additional prompt. Claude consistently generated accurate parameter summary tables and succinct model analysis reports. Modest variability in model structure diagrams generated for replicate prompts was identified. ChatGPT demonstrated simulation capabilities but revealed limitations with complex PK/PD models. LLMs have the potential to enhance key pharmacometrics modeling tasks. However, expert review of the results generated is essential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信