{"title":"一种非破坏性,快速,廉价,无毒的螯合树脂为基础的昆虫凭证标本和相关微生物组的DNA提取方案。","authors":"Morgan E Brown, Sara Ottati, Valeria Trivellone","doi":"10.1093/jisesa/ieaf062","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying a DNA extraction method that yields high quantity and quality DNA is a crucial component of molecular ecological studies; and the best suited method can vary greatly depending on research priorities. Here, we propose a nondestructive extraction method for insect museum vouchers aimed at analyzing gut-associated microbiomes. The leafhopper Euscelidius variegatus (Kirschbaum) (Hemiptera: Cicadellidae) associated with the bacterial plant pathogen Flavescence dorée phytoplasma, a member of the genus 'Candidatus Phytoplasma' (Mollicutes: Acholeplasmataceae), was used as an experimental model. We developed and refined a resin-based DNA extraction protocol by testing the effects of prelysis bleaching and postlysis proteinase K inactivation on DNA quality and yield. We found that bleaching did not compromise the integrity of insect and associated bacterial DNA and that excluding the inactivation of proteinase K did not interfere with quantitative polymerase chain reaction analysis. Based on our findings, we recommend a DNA extraction protocol for insect voucher specimens and associated microbiomes that includes a prelysis bleaching step to chemically degrade external contaminants without proteinase K inactivation, thereby reducing processing time. Our refined protocol resulted in a high DNA yield, which we successfully analyzed using quantitative polymerase chain reaction analysis and other downstream molecular applications, including targeted high-throughput sequencing.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132034/pdf/","citationCount":"0","resultStr":"{\"title\":\"A non-destructive, fast, inexpensive, non-toxic chelating resin-based DNA extraction protocol for insect voucher specimens and associated microbiomes.\",\"authors\":\"Morgan E Brown, Sara Ottati, Valeria Trivellone\",\"doi\":\"10.1093/jisesa/ieaf062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying a DNA extraction method that yields high quantity and quality DNA is a crucial component of molecular ecological studies; and the best suited method can vary greatly depending on research priorities. Here, we propose a nondestructive extraction method for insect museum vouchers aimed at analyzing gut-associated microbiomes. The leafhopper Euscelidius variegatus (Kirschbaum) (Hemiptera: Cicadellidae) associated with the bacterial plant pathogen Flavescence dorée phytoplasma, a member of the genus 'Candidatus Phytoplasma' (Mollicutes: Acholeplasmataceae), was used as an experimental model. We developed and refined a resin-based DNA extraction protocol by testing the effects of prelysis bleaching and postlysis proteinase K inactivation on DNA quality and yield. We found that bleaching did not compromise the integrity of insect and associated bacterial DNA and that excluding the inactivation of proteinase K did not interfere with quantitative polymerase chain reaction analysis. Based on our findings, we recommend a DNA extraction protocol for insect voucher specimens and associated microbiomes that includes a prelysis bleaching step to chemically degrade external contaminants without proteinase K inactivation, thereby reducing processing time. Our refined protocol resulted in a high DNA yield, which we successfully analyzed using quantitative polymerase chain reaction analysis and other downstream molecular applications, including targeted high-throughput sequencing.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieaf062\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf062","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
A non-destructive, fast, inexpensive, non-toxic chelating resin-based DNA extraction protocol for insect voucher specimens and associated microbiomes.
Identifying a DNA extraction method that yields high quantity and quality DNA is a crucial component of molecular ecological studies; and the best suited method can vary greatly depending on research priorities. Here, we propose a nondestructive extraction method for insect museum vouchers aimed at analyzing gut-associated microbiomes. The leafhopper Euscelidius variegatus (Kirschbaum) (Hemiptera: Cicadellidae) associated with the bacterial plant pathogen Flavescence dorée phytoplasma, a member of the genus 'Candidatus Phytoplasma' (Mollicutes: Acholeplasmataceae), was used as an experimental model. We developed and refined a resin-based DNA extraction protocol by testing the effects of prelysis bleaching and postlysis proteinase K inactivation on DNA quality and yield. We found that bleaching did not compromise the integrity of insect and associated bacterial DNA and that excluding the inactivation of proteinase K did not interfere with quantitative polymerase chain reaction analysis. Based on our findings, we recommend a DNA extraction protocol for insect voucher specimens and associated microbiomes that includes a prelysis bleaching step to chemically degrade external contaminants without proteinase K inactivation, thereby reducing processing time. Our refined protocol resulted in a high DNA yield, which we successfully analyzed using quantitative polymerase chain reaction analysis and other downstream molecular applications, including targeted high-throughput sequencing.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.