调节运动诱导的微rna和长链非编码rna的表达:对控制心血管疾病和心力衰竭的影响

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2025-05-20 eCollection Date: 2025-01-01 DOI:10.3389/fmolb.2025.1587124
Guobiao Yang, Wanying Yang
{"title":"调节运动诱导的微rna和长链非编码rna的表达:对控制心血管疾病和心力衰竭的影响","authors":"Guobiao Yang, Wanying Yang","doi":"10.3389/fmolb.2025.1587124","DOIUrl":null,"url":null,"abstract":"<p><p>The intricate interplay between physical training and non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), has attracted considerable attention in understanding physiological adaptations and pathological conditions. Both miRNAs and lncRNAs are essential modulators of gene expression, influencing various cellular processes, including those related to muscle metabolism, inflammation, and recovery from injury. This review investigates the bifunctional role of miRNAs and lncRNAs in response to physical training, highlighting their involvement in muscle hypertrophy, endurance adaptations, and the modulation of inflammatory pathways. Additionally, we examine how pathological conditions, such as cardiovascular disease, heart failure, can alter the expression profiles of miRNAs and lncRNAs, potentially disrupting the beneficial effects of physical training. The crosstalk between these non-coding RNAs under physiological and pathological states underscores their potential as biomarkers for assessing training responses and therapeutic targets for enhancing recovery and performance. Understanding these interactions may pave the way for novel interventions to optimize health outcomes through tailored physical training programs.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1587124"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129789/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulating the expression of exercise-induced micro-RNAs and long non-coding RNAs: implications for controlling cardiovascular diseases and heart failure.\",\"authors\":\"Guobiao Yang, Wanying Yang\",\"doi\":\"10.3389/fmolb.2025.1587124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intricate interplay between physical training and non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), has attracted considerable attention in understanding physiological adaptations and pathological conditions. Both miRNAs and lncRNAs are essential modulators of gene expression, influencing various cellular processes, including those related to muscle metabolism, inflammation, and recovery from injury. This review investigates the bifunctional role of miRNAs and lncRNAs in response to physical training, highlighting their involvement in muscle hypertrophy, endurance adaptations, and the modulation of inflammatory pathways. Additionally, we examine how pathological conditions, such as cardiovascular disease, heart failure, can alter the expression profiles of miRNAs and lncRNAs, potentially disrupting the beneficial effects of physical training. The crosstalk between these non-coding RNAs under physiological and pathological states underscores their potential as biomarkers for assessing training responses and therapeutic targets for enhancing recovery and performance. Understanding these interactions may pave the way for novel interventions to optimize health outcomes through tailored physical training programs.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1587124\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129789/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1587124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1587124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体育训练与非编码rna,特别是microRNAs (miRNAs)和长链非编码rna (lncRNAs)之间复杂的相互作用,在理解生理适应和病理条件方面引起了相当大的关注。mirna和lncrna都是基因表达的重要调节剂,影响各种细胞过程,包括与肌肉代谢、炎症和损伤恢复相关的过程。这篇综述研究了mirna和lncrna在身体训练反应中的双功能作用,强调了它们在肌肉肥大、耐力适应和炎症通路调节中的作用。此外,我们研究了病理状况,如心血管疾病、心力衰竭,如何改变mirna和lncrna的表达谱,从而潜在地破坏体育锻炼的有益效果。在生理和病理状态下,这些非编码rna之间的相互作用强调了它们作为评估训练反应和提高恢复和表现的治疗靶点的生物标志物的潜力。了解这些相互作用可能会为新的干预措施铺平道路,通过量身定制的体育训练计划来优化健康结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulating the expression of exercise-induced micro-RNAs and long non-coding RNAs: implications for controlling cardiovascular diseases and heart failure.

The intricate interplay between physical training and non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), has attracted considerable attention in understanding physiological adaptations and pathological conditions. Both miRNAs and lncRNAs are essential modulators of gene expression, influencing various cellular processes, including those related to muscle metabolism, inflammation, and recovery from injury. This review investigates the bifunctional role of miRNAs and lncRNAs in response to physical training, highlighting their involvement in muscle hypertrophy, endurance adaptations, and the modulation of inflammatory pathways. Additionally, we examine how pathological conditions, such as cardiovascular disease, heart failure, can alter the expression profiles of miRNAs and lncRNAs, potentially disrupting the beneficial effects of physical training. The crosstalk between these non-coding RNAs under physiological and pathological states underscores their potential as biomarkers for assessing training responses and therapeutic targets for enhancing recovery and performance. Understanding these interactions may pave the way for novel interventions to optimize health outcomes through tailored physical training programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信