{"title":"眼眶重建材料研究进展综述。","authors":"Yu Sheng, Fangkun Zhao, Tongtong Niu, Jun Xu","doi":"10.1116/6.0004390","DOIUrl":null,"url":null,"abstract":"<p><p>Orbital injuries or defects caused by various reasons are quite common, such as violent trauma or tumors. If the damaged orbits are not treated in a timely manner and the normal orbital structure cannot be restored, it may lead to ocular nerve injury, embedding or protrusion of orbital contents, and complications such as enophthalmos, diplopia, and eye movement disorders. Therefore, it is particularly important to repair orbital injuries or defects and reconstruct the normal structure of the orbit. Currently, there are various types of implants applied to reconstruct the orbit, which can be categorized as homogeneous and heterogeneous. Homogeneous materials are categorized as autologous and allogeneic, while heterogeneous materials are categorized into two main groups, absorbable and nonabsorbable materials. Ideal biomaterials for craniofacial fracture reconstruction must fulfill certain criteria such as biocompatibility, stability, safety, intraoperative adjustability, and low cost. This article provides a review of the advantages and shortcomings of various implants commonly used and the future direction of implant development.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in materials research related to orbital reconstruction: A review.\",\"authors\":\"Yu Sheng, Fangkun Zhao, Tongtong Niu, Jun Xu\",\"doi\":\"10.1116/6.0004390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orbital injuries or defects caused by various reasons are quite common, such as violent trauma or tumors. If the damaged orbits are not treated in a timely manner and the normal orbital structure cannot be restored, it may lead to ocular nerve injury, embedding or protrusion of orbital contents, and complications such as enophthalmos, diplopia, and eye movement disorders. Therefore, it is particularly important to repair orbital injuries or defects and reconstruct the normal structure of the orbit. Currently, there are various types of implants applied to reconstruct the orbit, which can be categorized as homogeneous and heterogeneous. Homogeneous materials are categorized as autologous and allogeneic, while heterogeneous materials are categorized into two main groups, absorbable and nonabsorbable materials. Ideal biomaterials for craniofacial fracture reconstruction must fulfill certain criteria such as biocompatibility, stability, safety, intraoperative adjustability, and low cost. This article provides a review of the advantages and shortcomings of various implants commonly used and the future direction of implant development.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004390\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004390","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Advances in materials research related to orbital reconstruction: A review.
Orbital injuries or defects caused by various reasons are quite common, such as violent trauma or tumors. If the damaged orbits are not treated in a timely manner and the normal orbital structure cannot be restored, it may lead to ocular nerve injury, embedding or protrusion of orbital contents, and complications such as enophthalmos, diplopia, and eye movement disorders. Therefore, it is particularly important to repair orbital injuries or defects and reconstruct the normal structure of the orbit. Currently, there are various types of implants applied to reconstruct the orbit, which can be categorized as homogeneous and heterogeneous. Homogeneous materials are categorized as autologous and allogeneic, while heterogeneous materials are categorized into two main groups, absorbable and nonabsorbable materials. Ideal biomaterials for craniofacial fracture reconstruction must fulfill certain criteria such as biocompatibility, stability, safety, intraoperative adjustability, and low cost. This article provides a review of the advantages and shortcomings of various implants commonly used and the future direction of implant development.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.