gazeMapper:一个自动分析来自一个或多个可穿戴眼动仪的注视数据的工具。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Diederick C Niehorster, Roy S Hessels, Marcus Nyström, Jeroen S Benjamins, Ignace T C Hooge
{"title":"gazeMapper:一个自动分析来自一个或多个可穿戴眼动仪的注视数据的工具。","authors":"Diederick C Niehorster, Roy S Hessels, Marcus Nyström, Jeroen S Benjamins, Ignace T C Hooge","doi":"10.3758/s13428-025-02704-4","DOIUrl":null,"url":null,"abstract":"<p><strong>The problem: </strong>wearable eye trackers deliver eye-tracking data on a scene video that is acquired by a camera affixed to the participant's head. Analyzing and interpreting such head-centered data is difficult and laborious manual work. Automated methods to map eye-tracking data to a world-centered reference frame (e.g., screens and tabletops) are available. These methods usually make use of fiducial markers. However, such mapping methods may be difficult to implement, expensive, and eye tracker-specific.</p><p><strong>The solution: </strong>here we present gazeMapper, an open-source tool for automated mapping and processing of eye-tracking data. gazeMapper can: (1) Transform head-centered data to planes in the world, (2) synchronize recordings from multiple participants, (3) determine data quality measures, e.g., accuracy and precision. gazeMapper comes with a GUI application (Windows, macOS, and Linux) and supports 11 different wearable eye trackers from AdHawk, Meta, Pupil, SeeTrue, SMI, Tobii, and Viewpointsystem. It is also possible to sidestep the GUI and use gazeMapper as a Python library directly.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 7","pages":"188"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134025/pdf/","citationCount":"0","resultStr":"{\"title\":\"gazeMapper: A tool for automated world-based analysis of gaze data from one or multiple wearable eye trackers.\",\"authors\":\"Diederick C Niehorster, Roy S Hessels, Marcus Nyström, Jeroen S Benjamins, Ignace T C Hooge\",\"doi\":\"10.3758/s13428-025-02704-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>The problem: </strong>wearable eye trackers deliver eye-tracking data on a scene video that is acquired by a camera affixed to the participant's head. Analyzing and interpreting such head-centered data is difficult and laborious manual work. Automated methods to map eye-tracking data to a world-centered reference frame (e.g., screens and tabletops) are available. These methods usually make use of fiducial markers. However, such mapping methods may be difficult to implement, expensive, and eye tracker-specific.</p><p><strong>The solution: </strong>here we present gazeMapper, an open-source tool for automated mapping and processing of eye-tracking data. gazeMapper can: (1) Transform head-centered data to planes in the world, (2) synchronize recordings from multiple participants, (3) determine data quality measures, e.g., accuracy and precision. gazeMapper comes with a GUI application (Windows, macOS, and Linux) and supports 11 different wearable eye trackers from AdHawk, Meta, Pupil, SeeTrue, SMI, Tobii, and Viewpointsystem. It is also possible to sidestep the GUI and use gazeMapper as a Python library directly.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 7\",\"pages\":\"188\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134025/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02704-4\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02704-4","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

问题是:可穿戴式眼动仪将眼动追踪数据传送到一个场景视频上,这个视频是由一个固定在参与者头上的摄像头获取的。分析和解释这种以头部为中心的数据是一项困难而费力的手工工作。将眼球追踪数据映射到以世界为中心的参考框架(例如,屏幕和桌面)的自动化方法是可用的。这些方法通常使用基准标记。然而,这种映射方法可能难以实现,昂贵,并且特定于眼动追踪器。解决方案:在这里我们介绍gazeMapper,一个用于自动映射和处理眼球追踪数据的开源工具。gazeMapper可以:(1)将以头部为中心的数据转换为世界上的平面,(2)同步来自多个参与者的记录,(3)确定数据质量指标,例如准确性和精度。gazeMapper带有GUI应用程序(Windows, macOS和Linux),并支持来自AdHawk, Meta,小学生,SeeTrue, SMI, Tobii和viewpoint系统的11种不同的可穿戴式眼动仪。也可以避开GUI,直接使用gazeMapper作为Python库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
gazeMapper: A tool for automated world-based analysis of gaze data from one or multiple wearable eye trackers.

The problem: wearable eye trackers deliver eye-tracking data on a scene video that is acquired by a camera affixed to the participant's head. Analyzing and interpreting such head-centered data is difficult and laborious manual work. Automated methods to map eye-tracking data to a world-centered reference frame (e.g., screens and tabletops) are available. These methods usually make use of fiducial markers. However, such mapping methods may be difficult to implement, expensive, and eye tracker-specific.

The solution: here we present gazeMapper, an open-source tool for automated mapping and processing of eye-tracking data. gazeMapper can: (1) Transform head-centered data to planes in the world, (2) synchronize recordings from multiple participants, (3) determine data quality measures, e.g., accuracy and precision. gazeMapper comes with a GUI application (Windows, macOS, and Linux) and supports 11 different wearable eye trackers from AdHawk, Meta, Pupil, SeeTrue, SMI, Tobii, and Viewpointsystem. It is also possible to sidestep the GUI and use gazeMapper as a Python library directly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信