Marjaana Viljanto, Charlotte Cutler, Jocelyn Habershon-Butcher, Pamela Hincks, James Scarth
{"title":"通过尿液和血浆分析检测经皮给药赛马的睾酮。","authors":"Marjaana Viljanto, Charlotte Cutler, Jocelyn Habershon-Butcher, Pamela Hincks, James Scarth","doi":"10.1002/dta.3905","DOIUrl":null,"url":null,"abstract":"<p><p>The use of testosterone in racehorses is predominantly monitored using international urine and plasma concentration-based thresholds and complementary steroid ratios. To date, there has been no published pharmacokinetic study on transdermally applied testosterone products in horses and whether their use could result in adverse analytical findings. Therefore, quantitative analysis of testosterone and epitestosterone in urine and testosterone in plasma samples was performed following a pilot multi-dose transdermal Testogel administration (1 mg/kg once a day for 7 days on clipped skin) to one gelding and one mare. The peak concentrations (C<sub>max</sub>) of free testosterone were 1060 and 1800 pg/mL in gelding and mare plasma, respectively. Testosterone concentrations exceeded the international plasma threshold of 100 pg/mL consistently for up to 4 h post-administration, after which detection above the threshold was sporadic up to 127 h. In urine, C<sub>max</sub> of free and conjugated (sulfate and glucuronide) testosterone were 700 and 323 ng/mL in gelding and mare urine, respectively. In the gelding, testosterone concentrations exceeded the international urine threshold of 20 ng/mL consistently for up to 47 h post-administration, but sporadically up to 143 h. In all samples, testosterone: epitestosterone ratios were greater than 5, another requirement for adverse analytical findings in geldings. In the mare, testosterone concentrations exceeded the urine threshold of 55 ng/mL consistently for up to 71 h post-administration, but sporadically up to 167 h. Therefore, these limited results for one gelding and one mare demonstrate that doping control following transdermal applications of testosterone to racehorses is possible using existing approaches.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Transdermal Application of Testosterone to Racehorses by Analysis of Urine and Plasma.\",\"authors\":\"Marjaana Viljanto, Charlotte Cutler, Jocelyn Habershon-Butcher, Pamela Hincks, James Scarth\",\"doi\":\"10.1002/dta.3905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of testosterone in racehorses is predominantly monitored using international urine and plasma concentration-based thresholds and complementary steroid ratios. To date, there has been no published pharmacokinetic study on transdermally applied testosterone products in horses and whether their use could result in adverse analytical findings. Therefore, quantitative analysis of testosterone and epitestosterone in urine and testosterone in plasma samples was performed following a pilot multi-dose transdermal Testogel administration (1 mg/kg once a day for 7 days on clipped skin) to one gelding and one mare. The peak concentrations (C<sub>max</sub>) of free testosterone were 1060 and 1800 pg/mL in gelding and mare plasma, respectively. Testosterone concentrations exceeded the international plasma threshold of 100 pg/mL consistently for up to 4 h post-administration, after which detection above the threshold was sporadic up to 127 h. In urine, C<sub>max</sub> of free and conjugated (sulfate and glucuronide) testosterone were 700 and 323 ng/mL in gelding and mare urine, respectively. In the gelding, testosterone concentrations exceeded the international urine threshold of 20 ng/mL consistently for up to 47 h post-administration, but sporadically up to 143 h. In all samples, testosterone: epitestosterone ratios were greater than 5, another requirement for adverse analytical findings in geldings. In the mare, testosterone concentrations exceeded the urine threshold of 55 ng/mL consistently for up to 71 h post-administration, but sporadically up to 167 h. Therefore, these limited results for one gelding and one mare demonstrate that doping control following transdermal applications of testosterone to racehorses is possible using existing approaches.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3905\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3905","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Detection of Transdermal Application of Testosterone to Racehorses by Analysis of Urine and Plasma.
The use of testosterone in racehorses is predominantly monitored using international urine and plasma concentration-based thresholds and complementary steroid ratios. To date, there has been no published pharmacokinetic study on transdermally applied testosterone products in horses and whether their use could result in adverse analytical findings. Therefore, quantitative analysis of testosterone and epitestosterone in urine and testosterone in plasma samples was performed following a pilot multi-dose transdermal Testogel administration (1 mg/kg once a day for 7 days on clipped skin) to one gelding and one mare. The peak concentrations (Cmax) of free testosterone were 1060 and 1800 pg/mL in gelding and mare plasma, respectively. Testosterone concentrations exceeded the international plasma threshold of 100 pg/mL consistently for up to 4 h post-administration, after which detection above the threshold was sporadic up to 127 h. In urine, Cmax of free and conjugated (sulfate and glucuronide) testosterone were 700 and 323 ng/mL in gelding and mare urine, respectively. In the gelding, testosterone concentrations exceeded the international urine threshold of 20 ng/mL consistently for up to 47 h post-administration, but sporadically up to 143 h. In all samples, testosterone: epitestosterone ratios were greater than 5, another requirement for adverse analytical findings in geldings. In the mare, testosterone concentrations exceeded the urine threshold of 55 ng/mL consistently for up to 71 h post-administration, but sporadically up to 167 h. Therefore, these limited results for one gelding and one mare demonstrate that doping control following transdermal applications of testosterone to racehorses is possible using existing approaches.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.