Qiao Wang, Chong Wang, Zhonglin Fang, Zhuohao Zhang, Ye Zhao, Teng Ma, Luoran Shang
{"title":"羟丙基纤维素组装微球作为旋转微流体的结构彩色条形码。","authors":"Qiao Wang, Chong Wang, Zhonglin Fang, Zhuohao Zhang, Ye Zhao, Teng Ma, Luoran Shang","doi":"10.1002/advs.202506556","DOIUrl":null,"url":null,"abstract":"<p>Optical barcodes are versatile information carriers widely applied for encryption, commercial anti-counterfeiting, and biomedical fields. Hydroxypropyl cellulose (HPC), as a natural derivative, exhibits excellent biocompatibility and can self-assemble into cholesteric liquid crystals (CLCs) with structure color. However, the high viscosity of HPC CLCs is a huge hurdle for material processing and thus limits their applications. In this study, a high-speed revolving microfluidic platform is developed for emulsifying high-viscosity methacrylate functionalized HPC (HPC-MA) solution to form droplets. HPC-MA molecules in the droplets can self-assemble into CLCs by water evaporation, and the resultant CLCs droplets can be cross-linked to form structural color barcode particles. The prepared HPC-MA CLCs barcoded particles exhibit well-defined and adjustable encoding information while maintaining excellent biocompatibility. Furthermore, the prepared barcode particles also demonstrate great potential in 3D cell culture and multiplex immunoassays. This work introduces an efficient way to continuously produce HPC-MA CLCs barcode particles with finely tunable size and uniformity. Such barcode particles are promising for widespread applications in bioanalysis and biodiagnostics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 32","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506556","citationCount":"0","resultStr":"{\"title\":\"Hydroxypropyl Cellulose Assembled Microspheres as Structural Color Barcodes from Revolving Microfluidics\",\"authors\":\"Qiao Wang, Chong Wang, Zhonglin Fang, Zhuohao Zhang, Ye Zhao, Teng Ma, Luoran Shang\",\"doi\":\"10.1002/advs.202506556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical barcodes are versatile information carriers widely applied for encryption, commercial anti-counterfeiting, and biomedical fields. Hydroxypropyl cellulose (HPC), as a natural derivative, exhibits excellent biocompatibility and can self-assemble into cholesteric liquid crystals (CLCs) with structure color. However, the high viscosity of HPC CLCs is a huge hurdle for material processing and thus limits their applications. In this study, a high-speed revolving microfluidic platform is developed for emulsifying high-viscosity methacrylate functionalized HPC (HPC-MA) solution to form droplets. HPC-MA molecules in the droplets can self-assemble into CLCs by water evaporation, and the resultant CLCs droplets can be cross-linked to form structural color barcode particles. The prepared HPC-MA CLCs barcoded particles exhibit well-defined and adjustable encoding information while maintaining excellent biocompatibility. Furthermore, the prepared barcode particles also demonstrate great potential in 3D cell culture and multiplex immunoassays. This work introduces an efficient way to continuously produce HPC-MA CLCs barcode particles with finely tunable size and uniformity. Such barcode particles are promising for widespread applications in bioanalysis and biodiagnostics.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 32\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506556\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydroxypropyl Cellulose Assembled Microspheres as Structural Color Barcodes from Revolving Microfluidics
Optical barcodes are versatile information carriers widely applied for encryption, commercial anti-counterfeiting, and biomedical fields. Hydroxypropyl cellulose (HPC), as a natural derivative, exhibits excellent biocompatibility and can self-assemble into cholesteric liquid crystals (CLCs) with structure color. However, the high viscosity of HPC CLCs is a huge hurdle for material processing and thus limits their applications. In this study, a high-speed revolving microfluidic platform is developed for emulsifying high-viscosity methacrylate functionalized HPC (HPC-MA) solution to form droplets. HPC-MA molecules in the droplets can self-assemble into CLCs by water evaporation, and the resultant CLCs droplets can be cross-linked to form structural color barcode particles. The prepared HPC-MA CLCs barcoded particles exhibit well-defined and adjustable encoding information while maintaining excellent biocompatibility. Furthermore, the prepared barcode particles also demonstrate great potential in 3D cell culture and multiplex immunoassays. This work introduces an efficient way to continuously produce HPC-MA CLCs barcode particles with finely tunable size and uniformity. Such barcode particles are promising for widespread applications in bioanalysis and biodiagnostics.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.