链长工程界面结构使无枝晶水性锌离子电池成为可能。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaqi Yang, Zhengxiao Ji, Miaoran Deng, Chaocang Weng, Xusheng Wang, Min Xu, Likun Pan, Jinliang Li
{"title":"链长工程界面结构使无枝晶水性锌离子电池成为可能。","authors":"Jiaqi Yang, Zhengxiao Ji, Miaoran Deng, Chaocang Weng, Xusheng Wang, Min Xu, Likun Pan, Jinliang Li","doi":"10.1039/d5mh00668f","DOIUrl":null,"url":null,"abstract":"<p><p>The growth of zinc dendrites in aqueous zinc-ion batteries (AZIBs) significantly compromises the cycling stability and operational lifespan, especially under prolonged charge-discharge cycles at high load, where dendrite formation poses serious safety risks. In this work, we propose a \"critical network equilibrium\" mechanism enabled by molecular weight-optimized dextran (DEX). Specifically, DEX with a molecular weight of 70 000 (D7) reaches a stabilization threshold in the ZnSO<sub>4</sub> electrolyte, where it self-assembles into an adaptive interfacial architecture. This dynamic network serves as an intelligent protective layer, effectively shielding the Zn anode from H<sup>+</sup> corrosion, optimizing the solvation shell to reinforce interfacial stability, and ensuring uniform Zn<sup>2+</sup> deposition through adaptive restructuring. Moreover, the D7-mediated interface preferentially directs Zn<sup>2+</sup> deposition onto the Zn(002) plane, while inhibiting disordered growth on the Zn(101) plane. Experimental results indicate that the Zn//Zn cell modified with D7 exhibits an ultra-stable lifespan of up to 4800 h at 1 mA cm<sup>-2</sup>/1 mA h cm<sup>-2</sup>, while the Zn//MnO<sub>2</sub> full-cell retains 83% of its capacity after 3000 cycles. We believe that our innovative strategy for optimizing electrolytes will offer new insights for prolonging the operational lifespan of AZIBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries.\",\"authors\":\"Jiaqi Yang, Zhengxiao Ji, Miaoran Deng, Chaocang Weng, Xusheng Wang, Min Xu, Likun Pan, Jinliang Li\",\"doi\":\"10.1039/d5mh00668f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growth of zinc dendrites in aqueous zinc-ion batteries (AZIBs) significantly compromises the cycling stability and operational lifespan, especially under prolonged charge-discharge cycles at high load, where dendrite formation poses serious safety risks. In this work, we propose a \\\"critical network equilibrium\\\" mechanism enabled by molecular weight-optimized dextran (DEX). Specifically, DEX with a molecular weight of 70 000 (D7) reaches a stabilization threshold in the ZnSO<sub>4</sub> electrolyte, where it self-assembles into an adaptive interfacial architecture. This dynamic network serves as an intelligent protective layer, effectively shielding the Zn anode from H<sup>+</sup> corrosion, optimizing the solvation shell to reinforce interfacial stability, and ensuring uniform Zn<sup>2+</sup> deposition through adaptive restructuring. Moreover, the D7-mediated interface preferentially directs Zn<sup>2+</sup> deposition onto the Zn(002) plane, while inhibiting disordered growth on the Zn(101) plane. Experimental results indicate that the Zn//Zn cell modified with D7 exhibits an ultra-stable lifespan of up to 4800 h at 1 mA cm<sup>-2</sup>/1 mA h cm<sup>-2</sup>, while the Zn//MnO<sub>2</sub> full-cell retains 83% of its capacity after 3000 cycles. We believe that our innovative strategy for optimizing electrolytes will offer new insights for prolonging the operational lifespan of AZIBs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00668f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00668f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水溶液锌离子电池(azib)中锌枝晶的生长会严重影响电池的循环稳定性和使用寿命,特别是在高负载下长时间充放电循环时,枝晶的形成会带来严重的安全隐患。在这项工作中,我们提出了一种由分子量优化的葡聚糖(DEX)实现的“临界网络平衡”机制。具体来说,分子量为70000 (D7)的DEX在ZnSO4电解质中达到稳定阈值,在那里它自组装成自适应的界面结构。该动态网络作为一个智能保护层,有效地保护Zn阳极免受H+腐蚀,优化溶剂化壳以增强界面稳定性,并通过自适应重组确保均匀的Zn2+沉积。此外,d7介导的界面优先引导Zn2+沉积到Zn(002)平面上,同时抑制Zn(101)平面上的无序生长。实验结果表明,D7修饰的Zn//Zn电池在1 mA cm-2/1 mA h cm-2下的超稳定寿命可达4800 h,而Zn//MnO2全电池在3000次循环后仍能保持83%的容量。我们相信,我们优化电解质的创新策略将为延长azib的使用寿命提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries.

The growth of zinc dendrites in aqueous zinc-ion batteries (AZIBs) significantly compromises the cycling stability and operational lifespan, especially under prolonged charge-discharge cycles at high load, where dendrite formation poses serious safety risks. In this work, we propose a "critical network equilibrium" mechanism enabled by molecular weight-optimized dextran (DEX). Specifically, DEX with a molecular weight of 70 000 (D7) reaches a stabilization threshold in the ZnSO4 electrolyte, where it self-assembles into an adaptive interfacial architecture. This dynamic network serves as an intelligent protective layer, effectively shielding the Zn anode from H+ corrosion, optimizing the solvation shell to reinforce interfacial stability, and ensuring uniform Zn2+ deposition through adaptive restructuring. Moreover, the D7-mediated interface preferentially directs Zn2+ deposition onto the Zn(002) plane, while inhibiting disordered growth on the Zn(101) plane. Experimental results indicate that the Zn//Zn cell modified with D7 exhibits an ultra-stable lifespan of up to 4800 h at 1 mA cm-2/1 mA h cm-2, while the Zn//MnO2 full-cell retains 83% of its capacity after 3000 cycles. We believe that our innovative strategy for optimizing electrolytes will offer new insights for prolonging the operational lifespan of AZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信