{"title":"晶粒形貌与晶间摩擦对晶粒堆积的相互作用。","authors":"Samuel Martin and Marcia A. Cooper","doi":"10.1039/D5SM00332F","DOIUrl":null,"url":null,"abstract":"<p >The bulk density of loosely packed grains is determined by grain morphology and the intergranular friction coefficient. Creating simulated grain packings with realistic packing densities is the first step in performing predictions of granular material behavior at higher compaction stresses. Our novel approach performs jamming simulations at near-zero pressure where the surface properties are decoupled from the elastic properties to explore the interaction between grain morphology and intergranular friction. We use bonded particle model (BPM) grain representations with different subparticle resolutions to vary their morphological properties. Our investigation uses both regular- and irregular-shaped BPM grains to develop a relationship between grain morphology, intergranular friction, and the jamming limit that applies to simulated and physical grains. The relationship prescribes a friction coefficient for use in simulations of grain packing that considers the effect of morphology.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 26","pages":" 5214-5230"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d5sm00332f?page=search","citationCount":"0","resultStr":"{\"title\":\"Interaction of grain morphology and intergranular friction on grain packing†\",\"authors\":\"Samuel Martin and Marcia A. Cooper\",\"doi\":\"10.1039/D5SM00332F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The bulk density of loosely packed grains is determined by grain morphology and the intergranular friction coefficient. Creating simulated grain packings with realistic packing densities is the first step in performing predictions of granular material behavior at higher compaction stresses. Our novel approach performs jamming simulations at near-zero pressure where the surface properties are decoupled from the elastic properties to explore the interaction between grain morphology and intergranular friction. We use bonded particle model (BPM) grain representations with different subparticle resolutions to vary their morphological properties. Our investigation uses both regular- and irregular-shaped BPM grains to develop a relationship between grain morphology, intergranular friction, and the jamming limit that applies to simulated and physical grains. The relationship prescribes a friction coefficient for use in simulations of grain packing that considers the effect of morphology.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 26\",\"pages\":\" 5214-5230\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d5sm00332f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00332f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00332f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Interaction of grain morphology and intergranular friction on grain packing†
The bulk density of loosely packed grains is determined by grain morphology and the intergranular friction coefficient. Creating simulated grain packings with realistic packing densities is the first step in performing predictions of granular material behavior at higher compaction stresses. Our novel approach performs jamming simulations at near-zero pressure where the surface properties are decoupled from the elastic properties to explore the interaction between grain morphology and intergranular friction. We use bonded particle model (BPM) grain representations with different subparticle resolutions to vary their morphological properties. Our investigation uses both regular- and irregular-shaped BPM grains to develop a relationship between grain morphology, intergranular friction, and the jamming limit that applies to simulated and physical grains. The relationship prescribes a friction coefficient for use in simulations of grain packing that considers the effect of morphology.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.