AA2099铝锂合金薄板裂纹尖端疲劳损伤演化的数值评估

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Mengdi Li, Yongjie Liu, Weijiu Huang, Xusheng Yang, Xianghui Zhu, Xin Wang, Mofan Liu, Haipeng Dong
{"title":"AA2099铝锂合金薄板裂纹尖端疲劳损伤演化的数值评估","authors":"Mengdi Li,&nbsp;Yongjie Liu,&nbsp;Weijiu Huang,&nbsp;Xusheng Yang,&nbsp;Xianghui Zhu,&nbsp;Xin Wang,&nbsp;Mofan Liu,&nbsp;Haipeng Dong","doi":"10.1111/ffe.14659","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Precipitate phase characteristics in Al–Li alloy sheet significantly influence damage evolution during fatigue crack propagation. To investigate the influence mechanisms, the present work establishes a cross-scale model that integrates the extended finite element method (XFEM) and the crystal plasticity finite element method (CPFEM) to elucidate the damage evolution at the crack tip. The results reveal that the T<sub>1</sub> phase facilitates the dislocation slip reversibility, with non-hardening slip retracting back to the crack tip, thereby reducing the cumulative damage. The accumulated shear strain could effectively predict the crack propagation paths. The planar slip effect of the <i>δ</i>′ phase significantly enhances the accumulated shear strain of the (1-11)[110] slip system, promoting single slip and resulting in a serrated propagation path. Conversely, the T<sub>1</sub> phase inhibits planar slip, enhancing the accumulated shear strain of multiple systems, and promoting multiple slip, leading to a relatively straight crack propagation path.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 7","pages":"3036-3049"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Assessment of Fatigue Damage Evolution at the Crack tip in AA2099 Al–Li Alloy Sheet\",\"authors\":\"Mengdi Li,&nbsp;Yongjie Liu,&nbsp;Weijiu Huang,&nbsp;Xusheng Yang,&nbsp;Xianghui Zhu,&nbsp;Xin Wang,&nbsp;Mofan Liu,&nbsp;Haipeng Dong\",\"doi\":\"10.1111/ffe.14659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Precipitate phase characteristics in Al–Li alloy sheet significantly influence damage evolution during fatigue crack propagation. To investigate the influence mechanisms, the present work establishes a cross-scale model that integrates the extended finite element method (XFEM) and the crystal plasticity finite element method (CPFEM) to elucidate the damage evolution at the crack tip. The results reveal that the T<sub>1</sub> phase facilitates the dislocation slip reversibility, with non-hardening slip retracting back to the crack tip, thereby reducing the cumulative damage. The accumulated shear strain could effectively predict the crack propagation paths. The planar slip effect of the <i>δ</i>′ phase significantly enhances the accumulated shear strain of the (1-11)[110] slip system, promoting single slip and resulting in a serrated propagation path. Conversely, the T<sub>1</sub> phase inhibits planar slip, enhancing the accumulated shear strain of multiple systems, and promoting multiple slip, leading to a relatively straight crack propagation path.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 7\",\"pages\":\"3036-3049\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14659\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

Al-Li合金板材在疲劳裂纹扩展过程中析出相特征对损伤演化有显著影响。为了研究裂纹尖端损伤的影响机制,本文建立了扩展有限元法(XFEM)和晶体塑性有限元法(CPFEM)相结合的跨尺度模型,以阐明裂纹尖端的损伤演化过程。结果表明:T1相有利于位错滑移的可逆性,使非硬化滑移回缩到裂纹尖端,从而减少了累积损伤;累积剪切应变能有效预测裂纹扩展路径。δ′相的平面滑移效应显著增强了(1-11)[110]滑移体系的累积剪切应变,促进了单滑移,形成了锯齿状的传播路径。相反,T1相抑制了平面滑移,增强了多体系的累积剪切应变,促进了多重滑移,导致裂纹扩展路径相对平坦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Assessment of Fatigue Damage Evolution at the Crack tip in AA2099 Al–Li Alloy Sheet

Precipitate phase characteristics in Al–Li alloy sheet significantly influence damage evolution during fatigue crack propagation. To investigate the influence mechanisms, the present work establishes a cross-scale model that integrates the extended finite element method (XFEM) and the crystal plasticity finite element method (CPFEM) to elucidate the damage evolution at the crack tip. The results reveal that the T1 phase facilitates the dislocation slip reversibility, with non-hardening slip retracting back to the crack tip, thereby reducing the cumulative damage. The accumulated shear strain could effectively predict the crack propagation paths. The planar slip effect of the δ′ phase significantly enhances the accumulated shear strain of the (1-11)[110] slip system, promoting single slip and resulting in a serrated propagation path. Conversely, the T1 phase inhibits planar slip, enhancing the accumulated shear strain of multiple systems, and promoting multiple slip, leading to a relatively straight crack propagation path.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信