Samantha C. Waterworth, Susan Egbert, John Sorensen, Barry R. O'Keefe, John A. Beutler
{"title":"全球地衣全息生物合成与分类图谱","authors":"Samantha C. Waterworth, Susan Egbert, John Sorensen, Barry R. O'Keefe, John A. Beutler","doi":"10.1111/1462-2920.70112","DOIUrl":null,"url":null,"abstract":"<p>Lichens are pioneer species in several ecosystems, and as such are found in a variety of geographic regions and environments. Here, inspection of metagenomic data from 794 lichen samples from 34 countries reveals the presence of a complex holobiont harbouring remarkable biosynthetic capabilities, particularly in the bacterial consortia, a component that has been somewhat underappreciated. While bacteria were consistently present, their abundance varied among lichen taxa. Common bacterial genera included <i>Microbacterium</i>, <i>Terribacillus</i>, and <i>JABEUN01</i> (an <i>Acidimicrobiaceae</i> bacterium awaiting Latin binomial naming assignment) albeit in low abundance. <i>Lichenihabitans</i> and <i>Sphingomonas</i> genera were moderately abundant, present in approximately 30% of samples, and exhibited an enrichment in the number of biosynthetic gene clusters (BGCs) predicted to encode secondary metabolites (biosynthetic potential). We found that both fungal and bacterial biosynthetic repertoires appeared to follow genus-specific patterns but that there was greater relative homogeneity of BGCs in the fungal genera. The substantial biosynthetic diversity within lichen holobionts is evident in our findings, with the lichen-associated bacteria emerging as a promising potential source for sustainable drug discovery.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70112","citationCount":"0","resultStr":"{\"title\":\"A Biosynthetic and Taxonomic Atlas of the Global Lichen Holobiont\",\"authors\":\"Samantha C. Waterworth, Susan Egbert, John Sorensen, Barry R. O'Keefe, John A. Beutler\",\"doi\":\"10.1111/1462-2920.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lichens are pioneer species in several ecosystems, and as such are found in a variety of geographic regions and environments. Here, inspection of metagenomic data from 794 lichen samples from 34 countries reveals the presence of a complex holobiont harbouring remarkable biosynthetic capabilities, particularly in the bacterial consortia, a component that has been somewhat underappreciated. While bacteria were consistently present, their abundance varied among lichen taxa. Common bacterial genera included <i>Microbacterium</i>, <i>Terribacillus</i>, and <i>JABEUN01</i> (an <i>Acidimicrobiaceae</i> bacterium awaiting Latin binomial naming assignment) albeit in low abundance. <i>Lichenihabitans</i> and <i>Sphingomonas</i> genera were moderately abundant, present in approximately 30% of samples, and exhibited an enrichment in the number of biosynthetic gene clusters (BGCs) predicted to encode secondary metabolites (biosynthetic potential). We found that both fungal and bacterial biosynthetic repertoires appeared to follow genus-specific patterns but that there was greater relative homogeneity of BGCs in the fungal genera. The substantial biosynthetic diversity within lichen holobionts is evident in our findings, with the lichen-associated bacteria emerging as a promising potential source for sustainable drug discovery.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.70112\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.70112","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A Biosynthetic and Taxonomic Atlas of the Global Lichen Holobiont
Lichens are pioneer species in several ecosystems, and as such are found in a variety of geographic regions and environments. Here, inspection of metagenomic data from 794 lichen samples from 34 countries reveals the presence of a complex holobiont harbouring remarkable biosynthetic capabilities, particularly in the bacterial consortia, a component that has been somewhat underappreciated. While bacteria were consistently present, their abundance varied among lichen taxa. Common bacterial genera included Microbacterium, Terribacillus, and JABEUN01 (an Acidimicrobiaceae bacterium awaiting Latin binomial naming assignment) albeit in low abundance. Lichenihabitans and Sphingomonas genera were moderately abundant, present in approximately 30% of samples, and exhibited an enrichment in the number of biosynthetic gene clusters (BGCs) predicted to encode secondary metabolites (biosynthetic potential). We found that both fungal and bacterial biosynthetic repertoires appeared to follow genus-specific patterns but that there was greater relative homogeneity of BGCs in the fungal genera. The substantial biosynthetic diversity within lichen holobionts is evident in our findings, with the lichen-associated bacteria emerging as a promising potential source for sustainable drug discovery.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens