用于紫外成像的高数值孔径抗日晒硅玻璃空气包层光纤束

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bingsheng Xu;Chaochao Shen;Henan Shen;Yirui Zang;Yanchi Wang;Yan Liu;Xin Lin;Fei Yu
{"title":"用于紫外成像的高数值孔径抗日晒硅玻璃空气包层光纤束","authors":"Bingsheng Xu;Chaochao Shen;Henan Shen;Yirui Zang;Yanchi Wang;Yan Liu;Xin Lin;Fei Yu","doi":"10.1109/JPHOT.2025.3570388","DOIUrl":null,"url":null,"abstract":"We report the design, fabrication and characterization of a new type of air-cladding fiber bundle (ACFB) made of fused silica glass. By using of the stack-and-draw fabrication method, 5605 cores of ACFB are divided into 295 hexagonal subregions, each comprised of 19 cores and enclosed by thin silica struct. Up to 0.99 NA and 6.2 μm resolution are measured at selective wavelengths in the spectral range from 400 nm to 800 nm. The image delivery at 254 nm wavelength by ACFB is demonstrated. The imaging by ACFB made of pure fused silica glass presents no degradation after exposure to 300 Gy X-ray radiation.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004427","citationCount":"0","resultStr":"{\"title\":\"High Numerical-Aperture Solarization-Resistant Silica-Glass Air-Cladding Fiber Bundle for the Ultraviolet Imaging\",\"authors\":\"Bingsheng Xu;Chaochao Shen;Henan Shen;Yirui Zang;Yanchi Wang;Yan Liu;Xin Lin;Fei Yu\",\"doi\":\"10.1109/JPHOT.2025.3570388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the design, fabrication and characterization of a new type of air-cladding fiber bundle (ACFB) made of fused silica glass. By using of the stack-and-draw fabrication method, 5605 cores of ACFB are divided into 295 hexagonal subregions, each comprised of 19 cores and enclosed by thin silica struct. Up to 0.99 NA and 6.2 μm resolution are measured at selective wavelengths in the spectral range from 400 nm to 800 nm. The image delivery at 254 nm wavelength by ACFB is demonstrated. The imaging by ACFB made of pure fused silica glass presents no degradation after exposure to 300 Gy X-ray radiation.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-5\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004427\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11004427/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11004427/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种新型熔融石英玻璃空气包层光纤束(ACFB)的设计、制造和性能表征。采用堆拉法,将5605个ACFB芯划分为295个六边形子区,每个子区由19个芯组成,并由薄硅结构包围。在400 nm至800 nm的光谱范围内,可测量到高达0.99 NA和6.2 μm的分辨率。演示了ACFB在254 nm波长下的图像传输。由纯熔融石英玻璃制成的ACFB在300 Gy x射线照射下成像无退化现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Numerical-Aperture Solarization-Resistant Silica-Glass Air-Cladding Fiber Bundle for the Ultraviolet Imaging
We report the design, fabrication and characterization of a new type of air-cladding fiber bundle (ACFB) made of fused silica glass. By using of the stack-and-draw fabrication method, 5605 cores of ACFB are divided into 295 hexagonal subregions, each comprised of 19 cores and enclosed by thin silica struct. Up to 0.99 NA and 6.2 μm resolution are measured at selective wavelengths in the spectral range from 400 nm to 800 nm. The image delivery at 254 nm wavelength by ACFB is demonstrated. The imaging by ACFB made of pure fused silica glass presents no degradation after exposure to 300 Gy X-ray radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信