具有常矩阵的平面线性微分弱延迟系统与等价常微分系统

IF 1.2 3区 数学 Q1 MATHEMATICS
Anna Derevianko , Josef Diblík
{"title":"具有常矩阵的平面线性微分弱延迟系统与等价常微分系统","authors":"Anna Derevianko ,&nbsp;Josef Diblík","doi":"10.1016/j.jmaa.2025.129740","DOIUrl":null,"url":null,"abstract":"<div><div>Considered is a linear planar delayed differential system <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>A</mi><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>B</mi><mi>x</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></math></span>, where <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a constant delay and <em>A</em>, <em>B</em> are <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> constant matrices. Assuming that the system is weakly delayed, its general solution is constructed utilizing the Laplace transform. All the cases are specified of the solutions merging. Moreover, ordinary differential systems are considered such that general solutions of both delayed and non-delayed systems coincide when a transient interval is passed. Initial data for the relevant non-delayed systems are used such that these define the same solution as the corresponding initial data to the delayed system. An analysis of previous findings is given with two illustrative examples considered. Some open problems are suggested as well.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129740"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar linear differential weakly delayed systems with constant matrices and equivalent ordinary differential systems\",\"authors\":\"Anna Derevianko ,&nbsp;Josef Diblík\",\"doi\":\"10.1016/j.jmaa.2025.129740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considered is a linear planar delayed differential system <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>A</mi><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>B</mi><mi>x</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></math></span>, where <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a constant delay and <em>A</em>, <em>B</em> are <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> constant matrices. Assuming that the system is weakly delayed, its general solution is constructed utilizing the Laplace transform. All the cases are specified of the solutions merging. Moreover, ordinary differential systems are considered such that general solutions of both delayed and non-delayed systems coincide when a transient interval is passed. Initial data for the relevant non-delayed systems are used such that these define the same solution as the corresponding initial data to the delayed system. An analysis of previous findings is given with two illustrative examples considered. Some open problems are suggested as well.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129740\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005219\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑线性平面延迟微分系统x˙(t)=Ax(t)+Bx(t−τ),其中t≥0,τ>;0为常数延迟,a, B为2×2常数矩阵。假设系统是弱延迟的,利用拉普拉斯变换构造了它的通解。所有的情况下,指定的解决方案合并。此外,还考虑了常微分系统在通过暂态区间时,时滞系统和非时滞系统的一般解重合。使用相关非延迟系统的初始数据,使得这些数据与延迟系统的相应初始数据定义相同的解。通过考虑两个说明性的例子,对以前的研究结果进行了分析。本文还提出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar linear differential weakly delayed systems with constant matrices and equivalent ordinary differential systems
Considered is a linear planar delayed differential system x˙(t)=Ax(t)+Bx(tτ), where t0, τ>0 is a constant delay and A, B are 2×2 constant matrices. Assuming that the system is weakly delayed, its general solution is constructed utilizing the Laplace transform. All the cases are specified of the solutions merging. Moreover, ordinary differential systems are considered such that general solutions of both delayed and non-delayed systems coincide when a transient interval is passed. Initial data for the relevant non-delayed systems are used such that these define the same solution as the corresponding initial data to the delayed system. An analysis of previous findings is given with two illustrative examples considered. Some open problems are suggested as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信