螺旋通道型超材料设计的理论建模

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
Ying Li, Xiaoru Qiao, Sheng Wei, Yat Sze Choy
{"title":"螺旋通道型超材料设计的理论建模","authors":"Ying Li,&nbsp;Xiaoru Qiao,&nbsp;Sheng Wei,&nbsp;Yat Sze Choy","doi":"10.1016/j.apacoust.2025.110871","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancement in acoustic metamaterials hold great promise for creating highly effective sound absorbers. Due to the compact nature of these metamaterials, precise manufacturing is crucial to achieving optimal absorption peaks. Therefore, it is essential to develop more reliable and accurate models to predict the acoustic properties of metamaterials, ensuring their precise configuration. This study presents a comprehensive theoretical model incorporating acoustic modal superposition and couplings for the design of coiled-channel type metamaterials (CCTMs). By utilizing this two-dimensional approach, our model accurately predicts the acoustic performance and peak frequencies, including higher-order peak frequencies of CCTMs. This model surpasses traditional methods relying on calculating the acoustic impedance based on empirical estimation of effective propagation length and plane wave assumptions. Additionally, we introduce a novel coiled-type metamaterial with strategically placed perforations, achieving wide and adjustable absorption band, particularly in the low-frequency regime. Comparative analysis with traditional CCTMs demonstrates that our design outperforms them in terms of acoustic properties and compact configurations. Furthermore, we explore configurations with dual coiled-type metamaterials of varying lengths arranged to enhance broadband sound absorption. Finally, experimental investigations validate the sound absorption performance of these configurations, highlighting the potential of our theoretical model in advancing acoustic metamaterial design.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110871"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical modelling of coiled-channel type metamaterials design\",\"authors\":\"Ying Li,&nbsp;Xiaoru Qiao,&nbsp;Sheng Wei,&nbsp;Yat Sze Choy\",\"doi\":\"10.1016/j.apacoust.2025.110871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advancement in acoustic metamaterials hold great promise for creating highly effective sound absorbers. Due to the compact nature of these metamaterials, precise manufacturing is crucial to achieving optimal absorption peaks. Therefore, it is essential to develop more reliable and accurate models to predict the acoustic properties of metamaterials, ensuring their precise configuration. This study presents a comprehensive theoretical model incorporating acoustic modal superposition and couplings for the design of coiled-channel type metamaterials (CCTMs). By utilizing this two-dimensional approach, our model accurately predicts the acoustic performance and peak frequencies, including higher-order peak frequencies of CCTMs. This model surpasses traditional methods relying on calculating the acoustic impedance based on empirical estimation of effective propagation length and plane wave assumptions. Additionally, we introduce a novel coiled-type metamaterial with strategically placed perforations, achieving wide and adjustable absorption band, particularly in the low-frequency regime. Comparative analysis with traditional CCTMs demonstrates that our design outperforms them in terms of acoustic properties and compact configurations. Furthermore, we explore configurations with dual coiled-type metamaterials of varying lengths arranged to enhance broadband sound absorption. Finally, experimental investigations validate the sound absorption performance of these configurations, highlighting the potential of our theoretical model in advancing acoustic metamaterial design.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"240 \",\"pages\":\"Article 110871\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25003433\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

声学超材料的最新进展为制造高效吸声材料带来了巨大的希望。由于这些超材料的紧凑性质,精确制造是实现最佳吸收峰的关键。因此,开发更可靠和准确的模型来预测超材料的声学特性,确保其精确配置是至关重要的。本文提出了一个综合声学模态叠加和耦合的理论模型,用于设计螺旋通道型超材料(cctm)。利用这种二维方法,我们的模型准确地预测了cctm的声学性能和峰值频率,包括高阶峰值频率。该模型超越了传统的基于经验估计有效传播长度和平面波假设来计算声阻抗的方法。此外,我们还引入了一种新型卷绕式超材料,该材料具有战略性的穿孔位置,可实现宽且可调节的吸收带,特别是在低频区域。与传统cctm的对比分析表明,我们的设计在声学性能和紧凑结构方面优于传统cctm。此外,我们探索了不同长度的双线圈型超材料的配置,以增强宽带吸声。最后,实验研究验证了这些结构的吸声性能,突出了我们的理论模型在推进声学超材料设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical modelling of coiled-channel type metamaterials design
Recent advancement in acoustic metamaterials hold great promise for creating highly effective sound absorbers. Due to the compact nature of these metamaterials, precise manufacturing is crucial to achieving optimal absorption peaks. Therefore, it is essential to develop more reliable and accurate models to predict the acoustic properties of metamaterials, ensuring their precise configuration. This study presents a comprehensive theoretical model incorporating acoustic modal superposition and couplings for the design of coiled-channel type metamaterials (CCTMs). By utilizing this two-dimensional approach, our model accurately predicts the acoustic performance and peak frequencies, including higher-order peak frequencies of CCTMs. This model surpasses traditional methods relying on calculating the acoustic impedance based on empirical estimation of effective propagation length and plane wave assumptions. Additionally, we introduce a novel coiled-type metamaterial with strategically placed perforations, achieving wide and adjustable absorption band, particularly in the low-frequency regime. Comparative analysis with traditional CCTMs demonstrates that our design outperforms them in terms of acoustic properties and compact configurations. Furthermore, we explore configurations with dual coiled-type metamaterials of varying lengths arranged to enhance broadband sound absorption. Finally, experimental investigations validate the sound absorption performance of these configurations, highlighting the potential of our theoretical model in advancing acoustic metamaterial design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信