二氧化铀核取证研究的新方法:硬、软x射线源实验室光电子能谱的应用

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Stuart A. Dunn , Paul Roussel , Aaron Wood , Ben F. Spencer , Robert W. Harrison , Philip Kaye , Matthew Higginson , Matthew R. Gilbert , Simon C. Middleburgh , Wendy R. Flavell
{"title":"二氧化铀核取证研究的新方法:硬、软x射线源实验室光电子能谱的应用","authors":"Stuart A. Dunn ,&nbsp;Paul Roussel ,&nbsp;Aaron Wood ,&nbsp;Ben F. Spencer ,&nbsp;Robert W. Harrison ,&nbsp;Philip Kaye ,&nbsp;Matthew Higginson ,&nbsp;Matthew R. Gilbert ,&nbsp;Simon C. Middleburgh ,&nbsp;Wendy R. Flavell","doi":"10.1016/j.apsadv.2025.100782","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear Forensic investigations rely on the analysis of the chemical and physical properties of nuclear materials. X-ray photoelectron spectroscopy (XPS) is a powerful tool that supports material assessment, typically analyzing the top few nanometers of the material. The onset of laboratory-based hard X-ray photoelectron spectroscopy (HAXPES) instrumentation provides the opportunity to probe deeper into the material’s bulk. The work presented in this study demonstrates the utility of a combined XPS and HAXPES analysis to isolate forensic signatures on the surface and into the bulk of uranium dioxide. A non-destructive depth profile, using the transitions observable with a 9.25 keV excitation source, highlighted an oxidized overlayer deeper than the XPS sampling depth. Peak fitting of high-resolution spectra allows identification of uranium oxidation states as well as inspection of secondary features, which provide insight into the material characteristics with an evolving chemistry from the surface to a more bulk like composition. Inelastic background analysis is performed to determine the in-depth distribution of atoms, developing a consistent model to describe the surface overlayer, correlated to the chemical and stoichiometric differences over the excitation range. Finally, the <em>MNN</em> X-ray excited Auger electron spectra are acquired from uranium dioxide for the first time for future use in the application of a Wagner chemical state plot to support nuclear forensics investigations.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100782"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for nuclear forensics investigations of uranium dioxide: Application of laboratory-based photoelectron spectroscopy with hard and Soft X-ray sources\",\"authors\":\"Stuart A. Dunn ,&nbsp;Paul Roussel ,&nbsp;Aaron Wood ,&nbsp;Ben F. Spencer ,&nbsp;Robert W. Harrison ,&nbsp;Philip Kaye ,&nbsp;Matthew Higginson ,&nbsp;Matthew R. Gilbert ,&nbsp;Simon C. Middleburgh ,&nbsp;Wendy R. Flavell\",\"doi\":\"10.1016/j.apsadv.2025.100782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nuclear Forensic investigations rely on the analysis of the chemical and physical properties of nuclear materials. X-ray photoelectron spectroscopy (XPS) is a powerful tool that supports material assessment, typically analyzing the top few nanometers of the material. The onset of laboratory-based hard X-ray photoelectron spectroscopy (HAXPES) instrumentation provides the opportunity to probe deeper into the material’s bulk. The work presented in this study demonstrates the utility of a combined XPS and HAXPES analysis to isolate forensic signatures on the surface and into the bulk of uranium dioxide. A non-destructive depth profile, using the transitions observable with a 9.25 keV excitation source, highlighted an oxidized overlayer deeper than the XPS sampling depth. Peak fitting of high-resolution spectra allows identification of uranium oxidation states as well as inspection of secondary features, which provide insight into the material characteristics with an evolving chemistry from the surface to a more bulk like composition. Inelastic background analysis is performed to determine the in-depth distribution of atoms, developing a consistent model to describe the surface overlayer, correlated to the chemical and stoichiometric differences over the excitation range. Finally, the <em>MNN</em> X-ray excited Auger electron spectra are acquired from uranium dioxide for the first time for future use in the application of a Wagner chemical state plot to support nuclear forensics investigations.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"28 \",\"pages\":\"Article 100782\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652392500090X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652392500090X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

核法医调查依赖于对核材料的化学和物理性质的分析。x射线光电子能谱(XPS)是支持材料评估的强大工具,通常分析材料的前几纳米。基于实验室的硬x射线光电子能谱(HAXPES)仪器的出现为深入探测材料的主体提供了机会。本研究展示了XPS和HAXPES结合分析在分离表面和大量二氧化铀的法医特征方面的实用性。使用9.25 keV激发源观察到的跃迁,一个非破坏性的深度剖面突出了比XPS采样深度更深的氧化覆盖层。高分辨率光谱的峰值拟合可以识别铀的氧化状态以及检查次要特征,从而深入了解从表面到更大块的化学成分演变的材料特征。进行非弹性背景分析以确定原子的深度分布,开发一致的模型来描述表面覆盖层,与激发范围内的化学和化学计量学差异相关。最后,首次从二氧化铀中获得了MNN x射线激发俄热电子能谱,用于未来瓦格纳化学状态图的应用,以支持核法医调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for nuclear forensics investigations of uranium dioxide: Application of laboratory-based photoelectron spectroscopy with hard and Soft X-ray sources
Nuclear Forensic investigations rely on the analysis of the chemical and physical properties of nuclear materials. X-ray photoelectron spectroscopy (XPS) is a powerful tool that supports material assessment, typically analyzing the top few nanometers of the material. The onset of laboratory-based hard X-ray photoelectron spectroscopy (HAXPES) instrumentation provides the opportunity to probe deeper into the material’s bulk. The work presented in this study demonstrates the utility of a combined XPS and HAXPES analysis to isolate forensic signatures on the surface and into the bulk of uranium dioxide. A non-destructive depth profile, using the transitions observable with a 9.25 keV excitation source, highlighted an oxidized overlayer deeper than the XPS sampling depth. Peak fitting of high-resolution spectra allows identification of uranium oxidation states as well as inspection of secondary features, which provide insight into the material characteristics with an evolving chemistry from the surface to a more bulk like composition. Inelastic background analysis is performed to determine the in-depth distribution of atoms, developing a consistent model to describe the surface overlayer, correlated to the chemical and stoichiometric differences over the excitation range. Finally, the MNN X-ray excited Auger electron spectra are acquired from uranium dioxide for the first time for future use in the application of a Wagner chemical state plot to support nuclear forensics investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信