{"title":"神经胶质对突触重塑和结构可塑性的经验依赖控制","authors":"Dominic J. Vita , Austin Ferro , Lucas Cheadle","doi":"10.1016/j.conb.2025.103059","DOIUrl":null,"url":null,"abstract":"<div><div>The central nervous system (CNS) integrates intrinsic molecular cues with sensory experience to shape synaptic connectivity between neurons. Once established, these emergent neural circuits remain plastic into adulthood to facilitate behavioral adaptations to changes in the sensory landscape. While sensory experience has been recognized as a major contributor to synaptic wiring since the foundational work of Hubel and Wiesel in the mid-1900s, the field has only recently begun to uncover the roles of nonneuronal cells, or glia, in experience-dependent aspects of synaptic refinement and remodeling. Herein, we review recent work demonstrating that many glial cell types—including invertebrate glia, astrocytes, microglia, and oligodendrocyte-lineage cells—participate in the experience-dependent remodeling of neural circuits across the lifespan.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103059"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experience-dependent control of synaptic remodeling and structural plasticity by glia\",\"authors\":\"Dominic J. Vita , Austin Ferro , Lucas Cheadle\",\"doi\":\"10.1016/j.conb.2025.103059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The central nervous system (CNS) integrates intrinsic molecular cues with sensory experience to shape synaptic connectivity between neurons. Once established, these emergent neural circuits remain plastic into adulthood to facilitate behavioral adaptations to changes in the sensory landscape. While sensory experience has been recognized as a major contributor to synaptic wiring since the foundational work of Hubel and Wiesel in the mid-1900s, the field has only recently begun to uncover the roles of nonneuronal cells, or glia, in experience-dependent aspects of synaptic refinement and remodeling. Herein, we review recent work demonstrating that many glial cell types—including invertebrate glia, astrocytes, microglia, and oligodendrocyte-lineage cells—participate in the experience-dependent remodeling of neural circuits across the lifespan.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"93 \",\"pages\":\"Article 103059\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095943882500090X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095943882500090X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Experience-dependent control of synaptic remodeling and structural plasticity by glia
The central nervous system (CNS) integrates intrinsic molecular cues with sensory experience to shape synaptic connectivity between neurons. Once established, these emergent neural circuits remain plastic into adulthood to facilitate behavioral adaptations to changes in the sensory landscape. While sensory experience has been recognized as a major contributor to synaptic wiring since the foundational work of Hubel and Wiesel in the mid-1900s, the field has only recently begun to uncover the roles of nonneuronal cells, or glia, in experience-dependent aspects of synaptic refinement and remodeling. Herein, we review recent work demonstrating that many glial cell types—including invertebrate glia, astrocytes, microglia, and oligodendrocyte-lineage cells—participate in the experience-dependent remodeling of neural circuits across the lifespan.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience