{"title":"稀疏次三次图的中值特征值","authors":"Zhengbo Chen , Zhouningxin Wang , Xiao-Dong Zhang","doi":"10.1016/j.disc.2025.114611","DOIUrl":null,"url":null,"abstract":"<div><div>For an <em>n</em>-vertex graph <em>G</em>, let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>…</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the sequence of eigenvalues of its adjacency matrix. The HL-index of an <em>n</em>-vertex graph <em>G</em>, denoted by <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>}</mo></math></span>. Mohar proved in 2015 that every subcubic graph <em>G</em> satisfies that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span> and conjectured that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span> when restricted to planar graphs. Bipartite subcubic graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-minor-free subcubic graphs have been verified to satisfy this conjecture. In this paper, we prove that two classes of sparse subcubic graphs <em>G</em> satisfy that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>: Subcubic graphs with maximum average degree smaller than <span><math><mfrac><mrow><mn>44</mn></mrow><mrow><mn>17</mn></mrow></mfrac></math></span> and subcubic planar graphs of girth at least 8.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114611"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Median eigenvalues of sparse subcubic graphs\",\"authors\":\"Zhengbo Chen , Zhouningxin Wang , Xiao-Dong Zhang\",\"doi\":\"10.1016/j.disc.2025.114611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For an <em>n</em>-vertex graph <em>G</em>, let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>…</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the sequence of eigenvalues of its adjacency matrix. The HL-index of an <em>n</em>-vertex graph <em>G</em>, denoted by <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>,</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>}</mo></math></span>. Mohar proved in 2015 that every subcubic graph <em>G</em> satisfies that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span> and conjectured that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span> when restricted to planar graphs. Bipartite subcubic graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-minor-free subcubic graphs have been verified to satisfy this conjecture. In this paper, we prove that two classes of sparse subcubic graphs <em>G</em> satisfy that <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>: Subcubic graphs with maximum average degree smaller than <span><math><mfrac><mrow><mn>44</mn></mrow><mrow><mn>17</mn></mrow></mfrac></math></span> and subcubic planar graphs of girth at least 8.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114611\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002195\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002195","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于n顶点图G,设λ1(G)≥λ2(G)≥…≥λn(G)为其邻接矩阵的特征值序列。n顶点图G的hl指数,用R(G)表示,定义为R(G)=max d {|λ⌊n+12⌋(G)|,|λ≤n+12²(G)|}。Mohar在2015年证明了每一个次立方图G都满足R(G)≤2,并推测当局限于平面图时R(G)≤1。证明了二部次三次图和k4次-无次三次图满足这一猜想。本文证明了两类稀疏次立方图G满足R(G)≤1:最大平均度小于4417的次立方图和周长至少为8的次立方平面图。
For an n-vertex graph G, let be the sequence of eigenvalues of its adjacency matrix. The HL-index of an n-vertex graph G, denoted by , is defined as . Mohar proved in 2015 that every subcubic graph G satisfies that and conjectured that when restricted to planar graphs. Bipartite subcubic graphs and -minor-free subcubic graphs have been verified to satisfy this conjecture. In this paper, we prove that two classes of sparse subcubic graphs G satisfy that : Subcubic graphs with maximum average degree smaller than and subcubic planar graphs of girth at least 8.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.