用异常预测股市回报:来自中国的证据

IF 6.9 2区 经济学 Q1 ECONOMICS
Jianqiu Wang , Zhuo Wang , Ke Wu
{"title":"用异常预测股市回报:来自中国的证据","authors":"Jianqiu Wang ,&nbsp;Zhuo Wang ,&nbsp;Ke Wu","doi":"10.1016/j.ijforecast.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>We empirically investigate the relation between anomaly portfolio returns and market return predictability in the Chinese stock market. Using 132 long-leg, short-leg, and long-short anomaly portfolio returns, we employ various shrinkage-based statistical learning methods to capture predictive signals of the anomalies in a high-dimensional setting. Our analysis reveals statistically and economically significant return predictability using long- and short-leg anomaly portfolio returns. Moreover, high arbitrage risk enhances forecasting performance, supporting that the predictability stems from mispricing correction persistence. Contrary to findings in the US stock market, we find little evidence that the long-short anomaly portfolios contribute to market return predictability in China, due to the low persistence of asymmetric mispricing corrections. We provide simulation evidence to justify the distinct prediction patterns for the US and Chinese stock markets.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1278-1295"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting stock market return with anomalies: Evidence from China\",\"authors\":\"Jianqiu Wang ,&nbsp;Zhuo Wang ,&nbsp;Ke Wu\",\"doi\":\"10.1016/j.ijforecast.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We empirically investigate the relation between anomaly portfolio returns and market return predictability in the Chinese stock market. Using 132 long-leg, short-leg, and long-short anomaly portfolio returns, we employ various shrinkage-based statistical learning methods to capture predictive signals of the anomalies in a high-dimensional setting. Our analysis reveals statistically and economically significant return predictability using long- and short-leg anomaly portfolio returns. Moreover, high arbitrage risk enhances forecasting performance, supporting that the predictability stems from mispricing correction persistence. Contrary to findings in the US stock market, we find little evidence that the long-short anomaly portfolios contribute to market return predictability in China, due to the low persistence of asymmetric mispricing corrections. We provide simulation evidence to justify the distinct prediction patterns for the US and Chinese stock markets.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 3\",\"pages\":\"Pages 1278-1295\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024001353\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001353","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对中国股票市场异常投资组合收益与市场收益可预测性之间的关系进行了实证研究。利用132个长腿、短腿和多空异常组合回报,我们采用各种基于收缩的统计学习方法来捕获高维环境下异常的预测信号。我们的分析揭示了使用长腿和短腿异常投资组合回报的统计和经济上显著的回报可预测性。此外,高套利风险增强了预测绩效,支持可预测性源于错误定价修正的持久性。与美国股市的研究结果相反,我们发现很少有证据表明多空异常投资组合有助于中国市场回报的可预测性,因为不对称错误定价修正的持久性较低。我们提供了模拟证据来证明美国和中国股市的不同预测模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting stock market return with anomalies: Evidence from China
We empirically investigate the relation between anomaly portfolio returns and market return predictability in the Chinese stock market. Using 132 long-leg, short-leg, and long-short anomaly portfolio returns, we employ various shrinkage-based statistical learning methods to capture predictive signals of the anomalies in a high-dimensional setting. Our analysis reveals statistically and economically significant return predictability using long- and short-leg anomaly portfolio returns. Moreover, high arbitrage risk enhances forecasting performance, supporting that the predictability stems from mispricing correction persistence. Contrary to findings in the US stock market, we find little evidence that the long-short anomaly portfolios contribute to market return predictability in China, due to the low persistence of asymmetric mispricing corrections. We provide simulation evidence to justify the distinct prediction patterns for the US and Chinese stock markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信