实时监测程序,尽早发现气泡

IF 6.9 2区 经济学 Q1 ECONOMICS
E.J. Whitehouse , D.I. Harvey , S.J. Leybourne
{"title":"实时监测程序,尽早发现气泡","authors":"E.J. Whitehouse ,&nbsp;D.I. Harvey ,&nbsp;S.J. Leybourne","doi":"10.1016/j.ijforecast.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Asset price bubbles and crashes can have severe consequences for the stability of financial and economic systems. Policymakers require timely identification of such bubbles in order to respond to their emergence. In this paper we propose new econometric procedures that improve the speed of detection for an emerging asset price bubble in real time. Our new monitoring procedures make use of alternative variance standardisations that are better able to capture the behaviour of the underlying process during a bubble phase. We derive asymptotic results to show that using these alternative variance standardisations does not increase the probability of false detection under the no-bubble (unit root) null hypothesis relative to existing procedures. However, Monte Carlo simulations demonstrate that much earlier detection becomes possible with our new procedures under the bubble (explosive autoregressive) alternative. Empirical applications to OECD housing markets and bitcoin prices show the value in terms of earlier detection of bubbles that our new procedures can achieve. In particular, we show that the United States housing bubble that preceded the global financial crisis could have been detected as early as 1999:Q1 by our new procedures.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1260-1277"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time monitoring procedures for early detection of bubbles\",\"authors\":\"E.J. Whitehouse ,&nbsp;D.I. Harvey ,&nbsp;S.J. Leybourne\",\"doi\":\"10.1016/j.ijforecast.2024.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Asset price bubbles and crashes can have severe consequences for the stability of financial and economic systems. Policymakers require timely identification of such bubbles in order to respond to their emergence. In this paper we propose new econometric procedures that improve the speed of detection for an emerging asset price bubble in real time. Our new monitoring procedures make use of alternative variance standardisations that are better able to capture the behaviour of the underlying process during a bubble phase. We derive asymptotic results to show that using these alternative variance standardisations does not increase the probability of false detection under the no-bubble (unit root) null hypothesis relative to existing procedures. However, Monte Carlo simulations demonstrate that much earlier detection becomes possible with our new procedures under the bubble (explosive autoregressive) alternative. Empirical applications to OECD housing markets and bitcoin prices show the value in terms of earlier detection of bubbles that our new procedures can achieve. In particular, we show that the United States housing bubble that preceded the global financial crisis could have been detected as early as 1999:Q1 by our new procedures.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 3\",\"pages\":\"Pages 1260-1277\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702400133X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702400133X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

资产价格泡沫和崩溃可能对金融和经济体系的稳定造成严重后果。政策制定者需要及时识别此类泡沫,以便对其出现做出反应。在本文中,我们提出了新的计量经济学程序,以提高对新兴资产价格泡沫的实时检测速度。我们的新监测程序利用了可选择的方差标准化,它能够更好地捕获在泡沫阶段的底层过程的行为。我们推导出渐近结果,表明使用这些替代方差标准化并不会增加在无气泡(单位根)零假设下误检的概率。然而,蒙特卡罗模拟表明,在气泡(爆炸自回归)替代方案下,我们的新程序可以更早地检测到。对经合组织住房市场和比特币价格的实证应用表明,我们的新程序在早期发现泡沫方面可以实现价值。特别是,我们表明,在全球金融危机之前的美国房地产泡沫可以早在1999年第一季度就被我们的新程序发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time monitoring procedures for early detection of bubbles
Asset price bubbles and crashes can have severe consequences for the stability of financial and economic systems. Policymakers require timely identification of such bubbles in order to respond to their emergence. In this paper we propose new econometric procedures that improve the speed of detection for an emerging asset price bubble in real time. Our new monitoring procedures make use of alternative variance standardisations that are better able to capture the behaviour of the underlying process during a bubble phase. We derive asymptotic results to show that using these alternative variance standardisations does not increase the probability of false detection under the no-bubble (unit root) null hypothesis relative to existing procedures. However, Monte Carlo simulations demonstrate that much earlier detection becomes possible with our new procedures under the bubble (explosive autoregressive) alternative. Empirical applications to OECD housing markets and bitcoin prices show the value in terms of earlier detection of bubbles that our new procedures can achieve. In particular, we show that the United States housing bubble that preceded the global financial crisis could have been detected as early as 1999:Q1 by our new procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信