扇形图2.0:灵活的预测分布和专家判断

IF 6.9 2区 经济学 Q1 ECONOMICS
Andrej Sokol
{"title":"扇形图2.0:灵活的预测分布和专家判断","authors":"Andrej Sokol","doi":"10.1016/j.ijforecast.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>I propose a new model, conditional quantile regression (CQR), that generates density forecasts consistent with a specific view of the future evolution of some of the explanatory variables. This addresses a shortcoming of existing quantile regression-based models in settings that require forecasts to be conditional on technical assumptions, such as most forecasting processes within policy institutions. Through an application to house price inflation in the euro area, I show that CQR provides a viable alternative to conditional density forecasting with Bayesian VARs, with added flexibility and further insights that do not come at the cost of forecasting performance.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1148-1164"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fan charts 2.0: Flexible forecast distributions with expert judgement\",\"authors\":\"Andrej Sokol\",\"doi\":\"10.1016/j.ijforecast.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>I propose a new model, conditional quantile regression (CQR), that generates density forecasts consistent with a specific view of the future evolution of some of the explanatory variables. This addresses a shortcoming of existing quantile regression-based models in settings that require forecasts to be conditional on technical assumptions, such as most forecasting processes within policy institutions. Through an application to house price inflation in the euro area, I show that CQR provides a viable alternative to conditional density forecasting with Bayesian VARs, with added flexibility and further insights that do not come at the cost of forecasting performance.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 3\",\"pages\":\"Pages 1148-1164\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024001262\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001262","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我提出了一个新的模型,条件分位数回归(CQR),它产生的密度预测与一些解释变量的未来演变的特定观点一致。这解决了现有基于分位数回归的模型在需要以技术假设为条件进行预测的情况下的一个缺点,例如政策机构内的大多数预测过程。通过对欧元区房价通胀的应用,我表明CQR为贝叶斯var的条件密度预测提供了一个可行的替代方案,具有更大的灵活性和进一步的洞察力,而不会以预测性能为代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fan charts 2.0: Flexible forecast distributions with expert judgement
I propose a new model, conditional quantile regression (CQR), that generates density forecasts consistent with a specific view of the future evolution of some of the explanatory variables. This addresses a shortcoming of existing quantile regression-based models in settings that require forecasts to be conditional on technical assumptions, such as most forecasting processes within policy institutions. Through an application to house price inflation in the euro area, I show that CQR provides a viable alternative to conditional density forecasting with Bayesian VARs, with added flexibility and further insights that do not come at the cost of forecasting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信