薄膜固态阴极形态不均一性对利用率和断裂动力学的影响

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-04 DOI:10.1021/acsnano.5c06799
Se Hwan Park, Carlos Juarez-Yescas, Kaustubh G. Naik, Yingjin Wang, Yuting Luo, Dhanya Puthusseri, Patrick Kwon, Bairav S. Vishnugopi, Badri Shyam, Heng Yang, John Cook, John Okasinski, Andrew C. Chuang, Xianghui Xiao, Julia R. Greer, Partha P. Mukherjee, Beniamin Zahiri, Paul V. Braun, Kelsey B. Hatzell
{"title":"薄膜固态阴极形态不均一性对利用率和断裂动力学的影响","authors":"Se Hwan Park, Carlos Juarez-Yescas, Kaustubh G. Naik, Yingjin Wang, Yuting Luo, Dhanya Puthusseri, Patrick Kwon, Bairav S. Vishnugopi, Badri Shyam, Heng Yang, John Cook, John Okasinski, Andrew C. Chuang, Xianghui Xiao, Julia R. Greer, Partha P. Mukherjee, Beniamin Zahiri, Paul V. Braun, Kelsey B. Hatzell","doi":"10.1021/acsnano.5c06799","DOIUrl":null,"url":null,"abstract":"Structural heterogeneity in solid-state batteries can impact the material utilization and fracture mechanisms. Crystallographically oriented LiCoO<sub>2</sub> film cathodes serve as a model electrode system for exploring how void distribution contributes to stress relief and buildup during cycling. Real- and reciprocal-space <i>operando</i> and <i>ex situ</i> synchrotron-based experiments are utilized to understand structural changes across multiple length scales that contribute to stress generation and fracture. Nanotomography uncovers a depth-dependent porosity variation in the pristine electrode and highlights the preferential fracture in regions of lower porosity during delithiation. Energy-dispersive X-ray diffraction and three-dimensional (3D) X-ray absorption near-edge spectroscopy (XANES) reveal the underutilization of cathode material in these regions. 3D XANES also confirms preferential delithiation near the subgrain boundaries. Chemo-mechanical modeling coupled with site-specific mechanical characterization demonstrates how stress accumulation in dense regions of the electrode leads to fracture and underutilization of active material. Our findings reveal the importance of material design to alleviate stress in small-volume changing cathodes.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"5 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological Heterogeneity Impact of Film Solid-State Cathode on Utilization and Fracture Dynamics\",\"authors\":\"Se Hwan Park, Carlos Juarez-Yescas, Kaustubh G. Naik, Yingjin Wang, Yuting Luo, Dhanya Puthusseri, Patrick Kwon, Bairav S. Vishnugopi, Badri Shyam, Heng Yang, John Cook, John Okasinski, Andrew C. Chuang, Xianghui Xiao, Julia R. Greer, Partha P. Mukherjee, Beniamin Zahiri, Paul V. Braun, Kelsey B. Hatzell\",\"doi\":\"10.1021/acsnano.5c06799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural heterogeneity in solid-state batteries can impact the material utilization and fracture mechanisms. Crystallographically oriented LiCoO<sub>2</sub> film cathodes serve as a model electrode system for exploring how void distribution contributes to stress relief and buildup during cycling. Real- and reciprocal-space <i>operando</i> and <i>ex situ</i> synchrotron-based experiments are utilized to understand structural changes across multiple length scales that contribute to stress generation and fracture. Nanotomography uncovers a depth-dependent porosity variation in the pristine electrode and highlights the preferential fracture in regions of lower porosity during delithiation. Energy-dispersive X-ray diffraction and three-dimensional (3D) X-ray absorption near-edge spectroscopy (XANES) reveal the underutilization of cathode material in these regions. 3D XANES also confirms preferential delithiation near the subgrain boundaries. Chemo-mechanical modeling coupled with site-specific mechanical characterization demonstrates how stress accumulation in dense regions of the electrode leads to fracture and underutilization of active material. Our findings reveal the importance of material design to alleviate stress in small-volume changing cathodes.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c06799\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c06799","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态电池的结构非均匀性会影响材料的利用和断裂机制。晶体取向的LiCoO2薄膜阴极作为一种模型电极系统,用于探索循环过程中空隙分布如何有助于应力消除和积累。利用实空间、往空操作和非原位同步辐射实验来了解导致应力产生和断裂的多个长度尺度的结构变化。纳米层析成像揭示了原始电极中深度相关的孔隙度变化,并强调了在剥蚀过程中孔隙度较低的区域的优先断裂。能量色散x射线衍射和三维(3D) x射线吸收近边光谱(XANES)揭示了这些区域正极材料的利用不足。3D XANES也证实了亚晶界附近的优先衰减。化学-力学建模结合特定部位的力学表征表明,电极密集区域的应力积累如何导致断裂和活性材料的未充分利用。我们的发现揭示了材料设计对于减轻小体积变化阴极的应力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphological Heterogeneity Impact of Film Solid-State Cathode on Utilization and Fracture Dynamics

Morphological Heterogeneity Impact of Film Solid-State Cathode on Utilization and Fracture Dynamics
Structural heterogeneity in solid-state batteries can impact the material utilization and fracture mechanisms. Crystallographically oriented LiCoO2 film cathodes serve as a model electrode system for exploring how void distribution contributes to stress relief and buildup during cycling. Real- and reciprocal-space operando and ex situ synchrotron-based experiments are utilized to understand structural changes across multiple length scales that contribute to stress generation and fracture. Nanotomography uncovers a depth-dependent porosity variation in the pristine electrode and highlights the preferential fracture in regions of lower porosity during delithiation. Energy-dispersive X-ray diffraction and three-dimensional (3D) X-ray absorption near-edge spectroscopy (XANES) reveal the underutilization of cathode material in these regions. 3D XANES also confirms preferential delithiation near the subgrain boundaries. Chemo-mechanical modeling coupled with site-specific mechanical characterization demonstrates how stress accumulation in dense regions of the electrode leads to fracture and underutilization of active material. Our findings reveal the importance of material design to alleviate stress in small-volume changing cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信