拓宽大功率长寿命锂离子电池用LiMn0.6Fe0.4PO4负极Mn2+/Mn3+氧化还原平台

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pengxu Wang, Yaoguo Fang, Erdong Zhang, Ling Chen, Haifeng Yu, Qian Cheng and Hao Jiang
{"title":"拓宽大功率长寿命锂离子电池用LiMn0.6Fe0.4PO4负极Mn2+/Mn3+氧化还原平台","authors":"Pengxu Wang, Yaoguo Fang, Erdong Zhang, Ling Chen, Haifeng Yu, Qian Cheng and Hao Jiang","doi":"10.1039/D5TA02101D","DOIUrl":null,"url":null,"abstract":"<p >LiMn<small><sub><em>x</em></sub></small>Fe<small><sub>1−<em>x</em></sub></small>PO<small><sub>4</sub></small> (LMFP, 0 &lt; <em>x</em> &lt; 1) cathodes exhibit 20% higher energy density compared to LiFePO<small><sub>4</sub></small> cathodes owing to the higher voltage plateau of the Mn<small><sup>2+</sup></small>/Mn<small><sup>3+</sup></small> redox couple (4.1 V <em>vs.</em> Li/Li<small><sup>+</sup></small>). However, the sluggish reaction kinetics of this redox couple lead to a serious phase transition, shortening the voltage plateau and reducing the electrochemical performance. Here, we report a novel LMFP cathode with a broadened Mn<small><sup>2+</sup></small>/Mn<small><sup>3+</sup></small> redox plateau <em>via in situ</em> Mg<small><sup>2+</sup></small> and Ti<small><sup>4+</sup></small> dual-doping. Mg<small><sup>2+</sup></small>, with its smaller ionic radius (0.65 Å), expands the Li<small><sup>+</sup></small> transfer channel by elongating the Li–O bond, while the Ti<small><sup>4+</sup></small> further accelerates Li<small><sup>+</sup></small> diffusion rates by inducing (101) crystal-facet exposure. The accelerated Li<small><sup>+</sup></small> diffusion effectively enhances reaction kinetics to mitigate the phase transition, resulting in a wider redox plateau with increased reversible capacity, especially at high power. The as-obtained LMFP-Mg/Ti delivers a capacity of 117 mA h g <small><sup>−1</sup></small> at 5 C, which represents a significant increase compared to the pristine LMFP (79 mA h g <small><sup>−1</sup></small>). Additionally, this cathode retains 94.6% of its initial capacity over 1000 cycles at 3 C, highlighting its strong potential for high-power and long-life LIBs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 27","pages":" 22155-22162"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadening the Mn2+/Mn3+ redox plateau in LiMn0.6Fe0.4PO4 cathodes for high-power and long-life Li-ion batteries†\",\"authors\":\"Pengxu Wang, Yaoguo Fang, Erdong Zhang, Ling Chen, Haifeng Yu, Qian Cheng and Hao Jiang\",\"doi\":\"10.1039/D5TA02101D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >LiMn<small><sub><em>x</em></sub></small>Fe<small><sub>1−<em>x</em></sub></small>PO<small><sub>4</sub></small> (LMFP, 0 &lt; <em>x</em> &lt; 1) cathodes exhibit 20% higher energy density compared to LiFePO<small><sub>4</sub></small> cathodes owing to the higher voltage plateau of the Mn<small><sup>2+</sup></small>/Mn<small><sup>3+</sup></small> redox couple (4.1 V <em>vs.</em> Li/Li<small><sup>+</sup></small>). However, the sluggish reaction kinetics of this redox couple lead to a serious phase transition, shortening the voltage plateau and reducing the electrochemical performance. Here, we report a novel LMFP cathode with a broadened Mn<small><sup>2+</sup></small>/Mn<small><sup>3+</sup></small> redox plateau <em>via in situ</em> Mg<small><sup>2+</sup></small> and Ti<small><sup>4+</sup></small> dual-doping. Mg<small><sup>2+</sup></small>, with its smaller ionic radius (0.65 Å), expands the Li<small><sup>+</sup></small> transfer channel by elongating the Li–O bond, while the Ti<small><sup>4+</sup></small> further accelerates Li<small><sup>+</sup></small> diffusion rates by inducing (101) crystal-facet exposure. The accelerated Li<small><sup>+</sup></small> diffusion effectively enhances reaction kinetics to mitigate the phase transition, resulting in a wider redox plateau with increased reversible capacity, especially at high power. The as-obtained LMFP-Mg/Ti delivers a capacity of 117 mA h g <small><sup>−1</sup></small> at 5 C, which represents a significant increase compared to the pristine LMFP (79 mA h g <small><sup>−1</sup></small>). Additionally, this cathode retains 94.6% of its initial capacity over 1000 cycles at 3 C, highlighting its strong potential for high-power and long-life LIBs.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 27\",\"pages\":\" 22155-22162\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02101d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02101d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

LiMnxFe1-xPO4 (LMFP, 0 <;x & lt;1)与LiFePO4阴极相比,由于Mn2+/Mn3+氧化还原电压平台更高(4.1V vs Li/Li+),阴极的能量密度提高了20%。然而,这种氧化还原反应动力学缓慢,导致相变严重,缩短了电压平台,电化学性能下降。本文报道了一种新型LMFP阴极,通过原位Mg2+和Ti4+双掺杂,拓宽了Mn2+/Mn3+氧化还原平台。离子半径较小的Mg2+ (0.65 Å)通过拉长Li- o键扩展Li+的传递通道,而Ti4+通过诱导(101)晶面暴露进一步加速Li+的扩散速率。加速的Li+扩散有效地增强了反应动力学,减缓了相变,导致更宽的氧化还原平台,增加了可逆容量,特别是在高功率下。获得的LMFP- mg /Ti在5℃时的容量为117 mAh g -1,与原始LMFP (79 mAh g -1)相比显着增加。此外,该阴极在3℃下超过1000次循环保持94.6%的初始容量,突出了其作为高功率和长寿命锂离子电池的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Broadening the Mn2+/Mn3+ redox plateau in LiMn0.6Fe0.4PO4 cathodes for high-power and long-life Li-ion batteries†

Broadening the Mn2+/Mn3+ redox plateau in LiMn0.6Fe0.4PO4 cathodes for high-power and long-life Li-ion batteries†

LiMnxFe1−xPO4 (LMFP, 0 < x < 1) cathodes exhibit 20% higher energy density compared to LiFePO4 cathodes owing to the higher voltage plateau of the Mn2+/Mn3+ redox couple (4.1 V vs. Li/Li+). However, the sluggish reaction kinetics of this redox couple lead to a serious phase transition, shortening the voltage plateau and reducing the electrochemical performance. Here, we report a novel LMFP cathode with a broadened Mn2+/Mn3+ redox plateau via in situ Mg2+ and Ti4+ dual-doping. Mg2+, with its smaller ionic radius (0.65 Å), expands the Li+ transfer channel by elongating the Li–O bond, while the Ti4+ further accelerates Li+ diffusion rates by inducing (101) crystal-facet exposure. The accelerated Li+ diffusion effectively enhances reaction kinetics to mitigate the phase transition, resulting in a wider redox plateau with increased reversible capacity, especially at high power. The as-obtained LMFP-Mg/Ti delivers a capacity of 117 mA h g −1 at 5 C, which represents a significant increase compared to the pristine LMFP (79 mA h g −1). Additionally, this cathode retains 94.6% of its initial capacity over 1000 cycles at 3 C, highlighting its strong potential for high-power and long-life LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信