具有超高能效的酸性硝酸电还原

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rong Zhang, Xintao Ma, Shaoce Zhang, Huilin Cui, Chuan Li, Yanbo Wang, Qing Li, Prof. Chao Peng, Dr. Ying Guo, Prof. Chunyi Zhi
{"title":"具有超高能效的酸性硝酸电还原","authors":"Rong Zhang,&nbsp;Xintao Ma,&nbsp;Shaoce Zhang,&nbsp;Huilin Cui,&nbsp;Chuan Li,&nbsp;Yanbo Wang,&nbsp;Qing Li,&nbsp;Prof. Chao Peng,&nbsp;Dr. Ying Guo,&nbsp;Prof. Chunyi Zhi","doi":"10.1002/anie.202507724","DOIUrl":null,"url":null,"abstract":"<p>Ammonia (NH<sub>3</sub>) is an important feedstock for industry, an ideal energy carrier, and a perspective storage media for hydrogen. Recently, electrochemical nitrate (NO<sub>3</sub>−) reduction under acidic conditions has received considerable attention but it suffers from limited efficiency especially under low NO<sub>3</sub>− concentration. Here, we report an in situ formed positively charged polyethyleneimine-modified Cu under acidic conditions as a catalyst-electrolyte interface (CEI) for electrochemical NO<sub>3</sub>− reduction to NH<sub>3</sub>. Such CEI can effectively accumulate NO<sub>3</sub>− anions via static interactions and accelerate *NO hydrogenation to *NOH by weakening *NO intermediate adsorption on Cu site, thereby facilitating NO3−-to-NH<sub>3</sub> conversion. Such CEI delivers an increased NH<sub>3</sub> Faradaic efficiency (FE) of 83.5% and an impressive half-cell energy efficiency (EE) of 37.1% in 10 mM NO<sub>3</sub>− solution (pH = 1). The NH<sub>3</sub> FE and EE can further increase to 90.2% and 44.1% in 0.5 M NO<sub>3</sub>−, respectively. The high EE of CEI surpasses previously reported catalyst performances for NO<sub>3</sub>− reduction. Finally, we demonstrate the feasibility of a novel NO<sub>3</sub>−-furfural battery, showcasing a self-power electrocatalytic system capable of simultaneously treating NO<sub>3</sub>− pollutants, generating value-added NH<sub>3</sub> and upgrading biomass. This work offers valuable insights into the construction of a CEI to enhance the efficiency of NH<sub>3</sub> synthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 32","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidic Nitrate Electroreduction with Ultrahigh Energy Efficiency\",\"authors\":\"Rong Zhang,&nbsp;Xintao Ma,&nbsp;Shaoce Zhang,&nbsp;Huilin Cui,&nbsp;Chuan Li,&nbsp;Yanbo Wang,&nbsp;Qing Li,&nbsp;Prof. Chao Peng,&nbsp;Dr. Ying Guo,&nbsp;Prof. Chunyi Zhi\",\"doi\":\"10.1002/anie.202507724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia (NH<sub>3</sub>) is an important feedstock for industry, an ideal energy carrier, and a perspective storage media for hydrogen. Recently, electrochemical nitrate (NO<sub>3</sub>−) reduction under acidic conditions has received considerable attention but it suffers from limited efficiency especially under low NO<sub>3</sub>− concentration. Here, we report an in situ formed positively charged polyethyleneimine-modified Cu under acidic conditions as a catalyst-electrolyte interface (CEI) for electrochemical NO<sub>3</sub>− reduction to NH<sub>3</sub>. Such CEI can effectively accumulate NO<sub>3</sub>− anions via static interactions and accelerate *NO hydrogenation to *NOH by weakening *NO intermediate adsorption on Cu site, thereby facilitating NO3−-to-NH<sub>3</sub> conversion. Such CEI delivers an increased NH<sub>3</sub> Faradaic efficiency (FE) of 83.5% and an impressive half-cell energy efficiency (EE) of 37.1% in 10 mM NO<sub>3</sub>− solution (pH = 1). The NH<sub>3</sub> FE and EE can further increase to 90.2% and 44.1% in 0.5 M NO<sub>3</sub>−, respectively. The high EE of CEI surpasses previously reported catalyst performances for NO<sub>3</sub>− reduction. Finally, we demonstrate the feasibility of a novel NO<sub>3</sub>−-furfural battery, showcasing a self-power electrocatalytic system capable of simultaneously treating NO<sub>3</sub>− pollutants, generating value-added NH<sub>3</sub> and upgrading biomass. This work offers valuable insights into the construction of a CEI to enhance the efficiency of NH<sub>3</sub> synthesis.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 32\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507724\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507724","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)是重要的工业原料,是理想的能量载体,也是氢的理想储存介质。近年来,酸性条件下电化学还原NO3−的研究备受关注,但其效率有限,特别是在低NO3−浓度条件下。在这里,我们报道了在酸性条件下原位形成带正电的聚乙烯亚胺修饰Cu作为电化学NO3−还原为NH3的催化剂-电解质界面(CEI)。这种CEI可以通过静态相互作用有效地积累NO3−阴离子,通过削弱*NO中间吸附在Cu位点上,加速*NO加氢到*NOH,从而促进NO3−向nh3的转化。这种CEI在10 mM NO3 -溶液(pH = 1)中提供了83.5%的NH3法拉第效率(FE)和令人印象深刻的37.1%的半电池能量效率(EE)。在0.5 M NO3−条件下,NH3 FE和EE分别提高到90.2%和44.1%。CEI的高EE超过了之前报道的NO3−还原催化剂的性能。最后,我们展示了一种新型NO3−-糠醛电池的可行性,展示了一种能够同时处理NO3−污染物,产生增值NH3和升级生物质的自供电电催化系统。这项工作为构建催化剂-电解质界面以提高NH3合成效率提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acidic Nitrate Electroreduction with Ultrahigh Energy Efficiency

Acidic Nitrate Electroreduction with Ultrahigh Energy Efficiency

Ammonia (NH3) is an important feedstock for industry, an ideal energy carrier, and a perspective storage media for hydrogen. Recently, electrochemical nitrate (NO3−) reduction under acidic conditions has received considerable attention but it suffers from limited efficiency especially under low NO3− concentration. Here, we report an in situ formed positively charged polyethyleneimine-modified Cu under acidic conditions as a catalyst-electrolyte interface (CEI) for electrochemical NO3− reduction to NH3. Such CEI can effectively accumulate NO3− anions via static interactions and accelerate *NO hydrogenation to *NOH by weakening *NO intermediate adsorption on Cu site, thereby facilitating NO3−-to-NH3 conversion. Such CEI delivers an increased NH3 Faradaic efficiency (FE) of 83.5% and an impressive half-cell energy efficiency (EE) of 37.1% in 10 mM NO3− solution (pH = 1). The NH3 FE and EE can further increase to 90.2% and 44.1% in 0.5 M NO3−, respectively. The high EE of CEI surpasses previously reported catalyst performances for NO3− reduction. Finally, we demonstrate the feasibility of a novel NO3−-furfural battery, showcasing a self-power electrocatalytic system capable of simultaneously treating NO3− pollutants, generating value-added NH3 and upgrading biomass. This work offers valuable insights into the construction of a CEI to enhance the efficiency of NH3 synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信