基于砷化镓高电子迁移率晶体管的非纳米材料生物传感器,用于快速和超灵敏的病原体检测

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Ying Zheng, Chunyang Zhang, Ying Zhang, Kun Zhou, Pengwei Tan, Youjiang Liu, Guotao Duan, Hengfei Li, Chilai Chen, Cunlan Guo, Xiaodong Li, Chen Chen, Ashaq Ali, Yang Zhang*, Xian-En Zhang* and Dong Men*, 
{"title":"基于砷化镓高电子迁移率晶体管的非纳米材料生物传感器,用于快速和超灵敏的病原体检测","authors":"Ying Zheng,&nbsp;Chunyang Zhang,&nbsp;Ying Zhang,&nbsp;Kun Zhou,&nbsp;Pengwei Tan,&nbsp;Youjiang Liu,&nbsp;Guotao Duan,&nbsp;Hengfei Li,&nbsp;Chilai Chen,&nbsp;Cunlan Guo,&nbsp;Xiaodong Li,&nbsp;Chen Chen,&nbsp;Ashaq Ali,&nbsp;Yang Zhang*,&nbsp;Xian-En Zhang* and Dong Men*,&nbsp;","doi":"10.1021/acssensors.4c03134","DOIUrl":null,"url":null,"abstract":"<p >Biofield effect transistors (bio-FETs) have emerged as promising candidates for next-generation pathogen detection platforms owing to their exceptional sensitivity and rapid response. However, they generally require complex electrical modulation strategies (e.g., nanomaterial-enhanced channels and external reference electrodes), which limits their practical applicability. Herein, we developed a structurally simplified Gallium–Arsenic-based high-electron-mobility transistor biosensor (GaAs-bioHEMT) fabricated through wafer-level processes, achieving an electron mobility of 7467.417 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. This biosensor demonstrated effective detection of SARS-CoV-2 nucleocapsid protein (NP), reaching a detection limit of 0.125 fg mL<sup>–1</sup> within 5 min. Operating in depletion mode, the GaAs-bioHEMT design removes the requirement for nanomaterial modification and external reference electrodes. This strategy not only simplifies operational procedures but also shows compatibility with conventional semiconductor manufacturing processes, demonstrating great potential for point-of-care (POC) diagnostics and scalable clinical testing platforms.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 6","pages":"3898–3908"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanomaterial-Independent Biosensor Based on Gallium Arsenide High-Electron-Mobility Transistors for Rapid and Ultra-Sensitive Pathogen Detection\",\"authors\":\"Ying Zheng,&nbsp;Chunyang Zhang,&nbsp;Ying Zhang,&nbsp;Kun Zhou,&nbsp;Pengwei Tan,&nbsp;Youjiang Liu,&nbsp;Guotao Duan,&nbsp;Hengfei Li,&nbsp;Chilai Chen,&nbsp;Cunlan Guo,&nbsp;Xiaodong Li,&nbsp;Chen Chen,&nbsp;Ashaq Ali,&nbsp;Yang Zhang*,&nbsp;Xian-En Zhang* and Dong Men*,&nbsp;\",\"doi\":\"10.1021/acssensors.4c03134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biofield effect transistors (bio-FETs) have emerged as promising candidates for next-generation pathogen detection platforms owing to their exceptional sensitivity and rapid response. However, they generally require complex electrical modulation strategies (e.g., nanomaterial-enhanced channels and external reference electrodes), which limits their practical applicability. Herein, we developed a structurally simplified Gallium–Arsenic-based high-electron-mobility transistor biosensor (GaAs-bioHEMT) fabricated through wafer-level processes, achieving an electron mobility of 7467.417 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. This biosensor demonstrated effective detection of SARS-CoV-2 nucleocapsid protein (NP), reaching a detection limit of 0.125 fg mL<sup>–1</sup> within 5 min. Operating in depletion mode, the GaAs-bioHEMT design removes the requirement for nanomaterial modification and external reference electrodes. This strategy not only simplifies operational procedures but also shows compatibility with conventional semiconductor manufacturing processes, demonstrating great potential for point-of-care (POC) diagnostics and scalable clinical testing platforms.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 6\",\"pages\":\"3898–3908\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.4c03134\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c03134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物场效应晶体管(bio- fet)由于其卓越的灵敏度和快速反应而成为下一代病原体检测平台的有希望的候选者。然而,它们通常需要复杂的电调制策略(例如,纳米材料增强通道和外部参考电极),这限制了它们的实际适用性。在此,我们开发了一种结构简化的基于镓砷的高电子迁移率晶体管生物传感器(GaAs-bioHEMT),通过晶圆级工艺制造,实现了7467.417 cm2 V-1 s-1的电子迁移率。该生物传感器可有效检测SARS-CoV-2核衣壳蛋白(NP),在5分钟内达到0.125 fg mL-1的检测限。在耗尽模式下工作,GaAs-bioHEMT设计消除了对纳米材料修饰和外部参比电极的要求。该策略不仅简化了操作程序,而且显示了与传统半导体制造工艺的兼容性,显示了在护理点(POC)诊断和可扩展临床测试平台方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Nanomaterial-Independent Biosensor Based on Gallium Arsenide High-Electron-Mobility Transistors for Rapid and Ultra-Sensitive Pathogen Detection

A Nanomaterial-Independent Biosensor Based on Gallium Arsenide High-Electron-Mobility Transistors for Rapid and Ultra-Sensitive Pathogen Detection

A Nanomaterial-Independent Biosensor Based on Gallium Arsenide High-Electron-Mobility Transistors for Rapid and Ultra-Sensitive Pathogen Detection

Biofield effect transistors (bio-FETs) have emerged as promising candidates for next-generation pathogen detection platforms owing to their exceptional sensitivity and rapid response. However, they generally require complex electrical modulation strategies (e.g., nanomaterial-enhanced channels and external reference electrodes), which limits their practical applicability. Herein, we developed a structurally simplified Gallium–Arsenic-based high-electron-mobility transistor biosensor (GaAs-bioHEMT) fabricated through wafer-level processes, achieving an electron mobility of 7467.417 cm2 V–1 s–1. This biosensor demonstrated effective detection of SARS-CoV-2 nucleocapsid protein (NP), reaching a detection limit of 0.125 fg mL–1 within 5 min. Operating in depletion mode, the GaAs-bioHEMT design removes the requirement for nanomaterial modification and external reference electrodes. This strategy not only simplifies operational procedures but also shows compatibility with conventional semiconductor manufacturing processes, demonstrating great potential for point-of-care (POC) diagnostics and scalable clinical testing platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信