一个用于评估轮廓强度和相似度的通用信息检索框架

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexandr A. Kalinin, John Arevalo, Erik Serrano, Loan Vulliard, Hillary Tsang, Michael Bornholdt, Alán F. Muñoz, Suganya Sivagurunathan, Bartek Rajwa, Anne E. Carpenter, Gregory P. Way, Shantanu Singh
{"title":"一个用于评估轮廓强度和相似度的通用信息检索框架","authors":"Alexandr A. Kalinin, John Arevalo, Erik Serrano, Loan Vulliard, Hillary Tsang, Michael Bornholdt, Alán F. Muñoz, Suganya Sivagurunathan, Bartek Rajwa, Anne E. Carpenter, Gregory P. Way, Shantanu Singh","doi":"10.1038/s41467-025-60306-2","DOIUrl":null,"url":null,"abstract":"<p>Large-scale profiling assays capture a cell population’s state by measuring thousands of biological properties per cell or sample. However, evaluating profile strength and similarity remains challenging due to the high dimensionality and non-linear, heterogeneous nature of measurements. Here, we develop a statistical framework using mean average precision (mAP) as a single, data-driven metric to address this challenge. We validate the mAP framework against established metrics through simulations and real-world data, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we use mAP to assess a sample’s phenotypic activity relative to controls, as well as the phenotypic consistency of groups of perturbations (or samples). We evaluate the framework across diverse datasets and on different profile types (image, protein, mRNA), perturbations (CRISPR, gene overexpression, small molecules), and resolutions (single-cell, bulk). The mAP framework, together with our open-source software package <i>copairs</i>, is useful for evaluating high-dimensional profiling data in biological research and drug discovery.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A versatile information retrieval framework for evaluating profile strength and similarity\",\"authors\":\"Alexandr A. Kalinin, John Arevalo, Erik Serrano, Loan Vulliard, Hillary Tsang, Michael Bornholdt, Alán F. Muñoz, Suganya Sivagurunathan, Bartek Rajwa, Anne E. Carpenter, Gregory P. Way, Shantanu Singh\",\"doi\":\"10.1038/s41467-025-60306-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale profiling assays capture a cell population’s state by measuring thousands of biological properties per cell or sample. However, evaluating profile strength and similarity remains challenging due to the high dimensionality and non-linear, heterogeneous nature of measurements. Here, we develop a statistical framework using mean average precision (mAP) as a single, data-driven metric to address this challenge. We validate the mAP framework against established metrics through simulations and real-world data, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we use mAP to assess a sample’s phenotypic activity relative to controls, as well as the phenotypic consistency of groups of perturbations (or samples). We evaluate the framework across diverse datasets and on different profile types (image, protein, mRNA), perturbations (CRISPR, gene overexpression, small molecules), and resolutions (single-cell, bulk). The mAP framework, together with our open-source software package <i>copairs</i>, is useful for evaluating high-dimensional profiling data in biological research and drug discovery.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60306-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60306-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大规模分析分析通过测量每个细胞或样品的数千种生物特性来捕获细胞群体的状态。然而,由于测量的高维性、非线性和异质性,评估剖面强度和相似性仍然具有挑战性。在这里,我们开发了一个统计框架,使用平均精度(mAP)作为单个数据驱动的度量来解决这一挑战。我们通过模拟和真实世界的数据验证了mAP框架对既定指标的有效性,揭示了其捕捉细胞状态中微妙而有意义的生物学差异的能力。具体来说,我们使用mAP来评估样本相对于对照组的表型活性,以及扰动组(或样本)的表型一致性。我们评估了不同数据集和不同剖面类型(图像,蛋白质,mRNA),扰动(CRISPR,基因过表达,小分子)和分辨率(单细胞,散装)的框架。mAP框架,连同我们的开源软件包,对于评估生物研究和药物发现中的高维分析数据非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A versatile information retrieval framework for evaluating profile strength and similarity

A versatile information retrieval framework for evaluating profile strength and similarity

Large-scale profiling assays capture a cell population’s state by measuring thousands of biological properties per cell or sample. However, evaluating profile strength and similarity remains challenging due to the high dimensionality and non-linear, heterogeneous nature of measurements. Here, we develop a statistical framework using mean average precision (mAP) as a single, data-driven metric to address this challenge. We validate the mAP framework against established metrics through simulations and real-world data, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we use mAP to assess a sample’s phenotypic activity relative to controls, as well as the phenotypic consistency of groups of perturbations (or samples). We evaluate the framework across diverse datasets and on different profile types (image, protein, mRNA), perturbations (CRISPR, gene overexpression, small molecules), and resolutions (single-cell, bulk). The mAP framework, together with our open-source software package copairs, is useful for evaluating high-dimensional profiling data in biological research and drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信