{"title":"具有相干光学控制的超高应变金刚石自旋寄存器","authors":"Marco Klotz, Andreas Tangemann, Alexander Kubanek","doi":"10.1038/s41534-025-01049-2","DOIUrl":null,"url":null,"abstract":"<p>Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies. In particular, the good optical properties of silicon-vacancy centers in diamond, combined with naturally occurring and exceptionally coherent nuclear spins, serve as a building block for quantum networking applications. Here, we show that leveraging an ultra-high-strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature. Moreover, we indirectly control and characterize a <sup>13</sup>C nuclear spin and establish a quantum register. We overcome limited nuclear spin initialization by implementing single-shot nuclear spin readout. Lastly, we demonstrate coherent optical control with GHz rates, thus opening a potential connection of the register to the optical domain. Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"4 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-high strained diamond spin register with coherent optical control\",\"authors\":\"Marco Klotz, Andreas Tangemann, Alexander Kubanek\",\"doi\":\"10.1038/s41534-025-01049-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies. In particular, the good optical properties of silicon-vacancy centers in diamond, combined with naturally occurring and exceptionally coherent nuclear spins, serve as a building block for quantum networking applications. Here, we show that leveraging an ultra-high-strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature. Moreover, we indirectly control and characterize a <sup>13</sup>C nuclear spin and establish a quantum register. We overcome limited nuclear spin initialization by implementing single-shot nuclear spin readout. Lastly, we demonstrate coherent optical control with GHz rates, thus opening a potential connection of the register to the optical domain. Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01049-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01049-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ultra-high strained diamond spin register with coherent optical control
Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies. In particular, the good optical properties of silicon-vacancy centers in diamond, combined with naturally occurring and exceptionally coherent nuclear spins, serve as a building block for quantum networking applications. Here, we show that leveraging an ultra-high-strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature. Moreover, we indirectly control and characterize a 13C nuclear spin and establish a quantum register. We overcome limited nuclear spin initialization by implementing single-shot nuclear spin readout. Lastly, we demonstrate coherent optical control with GHz rates, thus opening a potential connection of the register to the optical domain. Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.