Markus Teller, Susana Plascencia, Cristina Sastre Jachimska, Samuele Grandi, Hugues de Riedmatten
{"title":"一种单光子水平的固态临时多路量子存储阵列","authors":"Markus Teller, Susana Plascencia, Cristina Sastre Jachimska, Samuele Grandi, Hugues de Riedmatten","doi":"10.1038/s41534-025-01042-9","DOIUrl":null,"url":null,"abstract":"<p>The exploitation of multimodality in different degrees of freedom is one of the most promising ways to increase the rate of heralded entanglement between distant quantum nodes. In this paper, we realize a spatially-multiplexed solid-state quantum memory array with ten individually controllable spin-wave memory cells featuring on-demand read-out and temporal multiplexing. By combining spatial and temporal multiplexing, we store weak coherent pulses at the single-photon level in up to 250 spatio-temporal modes, with an average signal-to-noise ratio of 10(2). We perform a thorough characterization of the whole system, including its multiplexing and demultiplexing stage. We verify that the memory array exhibits low cross-talk even at the single-photon level. The measured performance indicates readiness for storing non-classical states and promises a speed-up in entanglement distribution rates.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"41 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solid-state temporally multiplexed quantum memory array at the single-photon level\",\"authors\":\"Markus Teller, Susana Plascencia, Cristina Sastre Jachimska, Samuele Grandi, Hugues de Riedmatten\",\"doi\":\"10.1038/s41534-025-01042-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exploitation of multimodality in different degrees of freedom is one of the most promising ways to increase the rate of heralded entanglement between distant quantum nodes. In this paper, we realize a spatially-multiplexed solid-state quantum memory array with ten individually controllable spin-wave memory cells featuring on-demand read-out and temporal multiplexing. By combining spatial and temporal multiplexing, we store weak coherent pulses at the single-photon level in up to 250 spatio-temporal modes, with an average signal-to-noise ratio of 10(2). We perform a thorough characterization of the whole system, including its multiplexing and demultiplexing stage. We verify that the memory array exhibits low cross-talk even at the single-photon level. The measured performance indicates readiness for storing non-classical states and promises a speed-up in entanglement distribution rates.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01042-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01042-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A solid-state temporally multiplexed quantum memory array at the single-photon level
The exploitation of multimodality in different degrees of freedom is one of the most promising ways to increase the rate of heralded entanglement between distant quantum nodes. In this paper, we realize a spatially-multiplexed solid-state quantum memory array with ten individually controllable spin-wave memory cells featuring on-demand read-out and temporal multiplexing. By combining spatial and temporal multiplexing, we store weak coherent pulses at the single-photon level in up to 250 spatio-temporal modes, with an average signal-to-noise ratio of 10(2). We perform a thorough characterization of the whole system, including its multiplexing and demultiplexing stage. We verify that the memory array exhibits low cross-talk even at the single-photon level. The measured performance indicates readiness for storing non-classical states and promises a speed-up in entanglement distribution rates.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.