利用二元和三元氧化物盖层提高新一代钙钛矿基tco的长期稳定性

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-06-04 DOI:10.1039/D4NR04806G
Moussa Mezhoud, Martando Rath, Stéphanie Gascoin, Sylvain Duprey, Philippe Marie, Julien Cardin, Christophe Labbé, Wilfrid Prellier and Ulrike Lüders
{"title":"利用二元和三元氧化物盖层提高新一代钙钛矿基tco的长期稳定性","authors":"Moussa Mezhoud, Martando Rath, Stéphanie Gascoin, Sylvain Duprey, Philippe Marie, Julien Cardin, Christophe Labbé, Wilfrid Prellier and Ulrike Lüders","doi":"10.1039/D4NR04806G","DOIUrl":null,"url":null,"abstract":"<p >We report the impact of capping layers on vanadate based transparent conductive oxides (TCOs) to prolong the thermal stability with a minimal loss of electrical conductivity during heat treatment in ambient environment. In the present study, various capping layers (amorphous Al<small><sub>2</sub></small>O<small><sub>3</sub></small>, LaAlO<small><sub>3</sub></small> (LAO), TiO<small><sub>2</sub></small> grown at base pressure and TiO<small><sub>2</sub></small> deposited under oxygen partial pressure) are grown <em>in situ</em> on polycrystalline perovskite SrVO<small><sub>3</sub></small> (SVO) thin films using Pulsed Laser Deposition (PLD). The results show that amorphous LaAlO<small><sub>3</sub></small> is the most promising capping layer among the oxide layers, to preserve both electrical and optical properties of perovskite SVO films from natural as well as artificial aging. Our present approach for a capping layer on SVO may address the long-term stability issues of correlated TCOs and would open an opportunity for the future oxide electronics applications.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 25","pages":" 15319-15330"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04806g?page=search","citationCount":"0","resultStr":"{\"title\":\"Improving the long-term stability of new-generation perovskite-based TCOs using binary and ternary oxides capping layers†\",\"authors\":\"Moussa Mezhoud, Martando Rath, Stéphanie Gascoin, Sylvain Duprey, Philippe Marie, Julien Cardin, Christophe Labbé, Wilfrid Prellier and Ulrike Lüders\",\"doi\":\"10.1039/D4NR04806G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the impact of capping layers on vanadate based transparent conductive oxides (TCOs) to prolong the thermal stability with a minimal loss of electrical conductivity during heat treatment in ambient environment. In the present study, various capping layers (amorphous Al<small><sub>2</sub></small>O<small><sub>3</sub></small>, LaAlO<small><sub>3</sub></small> (LAO), TiO<small><sub>2</sub></small> grown at base pressure and TiO<small><sub>2</sub></small> deposited under oxygen partial pressure) are grown <em>in situ</em> on polycrystalline perovskite SrVO<small><sub>3</sub></small> (SVO) thin films using Pulsed Laser Deposition (PLD). The results show that amorphous LaAlO<small><sub>3</sub></small> is the most promising capping layer among the oxide layers, to preserve both electrical and optical properties of perovskite SVO films from natural as well as artificial aging. Our present approach for a capping layer on SVO may address the long-term stability issues of correlated TCOs and would open an opportunity for the future oxide electronics applications.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 25\",\"pages\":\" 15319-15330\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04806g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04806g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04806g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了盖层对钒酸盐基透明导电氧化物(tco)的影响,以延长热稳定性,同时在环境中热处理时最小化导电性损失。在本研究中,利用脉冲激光沉积(PLD)技术在多晶钙钛矿SrVO3 (SVO)薄膜上原位生长了多种封盖层(无定形Al2O3、LaAlO3 (LAO)、基压生长的TiO2和氧分压沉积的TiO2)。结果表明,在氧化层中,无定形LaAlO3是最有希望的封盖层,可以使钙钛矿SVO薄膜的电学和光学性能免受自然和人工老化的影响。我们目前在SVO上的封盖层方法可以解决相关tco的长期稳定性问题,并为未来的氧化物电子应用开辟了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving the long-term stability of new-generation perovskite-based TCOs using binary and ternary oxides capping layers†

Improving the long-term stability of new-generation perovskite-based TCOs using binary and ternary oxides capping layers†

We report the impact of capping layers on vanadate based transparent conductive oxides (TCOs) to prolong the thermal stability with a minimal loss of electrical conductivity during heat treatment in ambient environment. In the present study, various capping layers (amorphous Al2O3, LaAlO3 (LAO), TiO2 grown at base pressure and TiO2 deposited under oxygen partial pressure) are grown in situ on polycrystalline perovskite SrVO3 (SVO) thin films using Pulsed Laser Deposition (PLD). The results show that amorphous LaAlO3 is the most promising capping layer among the oxide layers, to preserve both electrical and optical properties of perovskite SVO films from natural as well as artificial aging. Our present approach for a capping layer on SVO may address the long-term stability issues of correlated TCOs and would open an opportunity for the future oxide electronics applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信