Byunghwee Lee, Rachith Aiyappa, Yong-Yeol Ahn, Haewoon Kwak, Jisun An
{"title":"基于大型语言模型的语义嵌入空间,用于对人类信念进行建模","authors":"Byunghwee Lee, Rachith Aiyappa, Yong-Yeol Ahn, Haewoon Kwak, Jisun An","doi":"10.1038/s41562-025-02228-z","DOIUrl":null,"url":null,"abstract":"<p>Beliefs form the foundation of human cognition and decision-making, guiding our actions and social connections. A model encapsulating beliefs and their interrelationships is crucial for understanding their influence on our actions. However, research on belief interplay has often been limited to beliefs related to specific issues and has relied heavily on surveys. Here we propose a method to study the nuanced interplay between thousands of beliefs by leveraging online user debate data and mapping beliefs onto a neural embedding space constructed using a fine-tuned large language model. This belief space captures the interconnectedness and polarization of diverse beliefs across social issues. Our findings show that positions within this belief space predict new beliefs of individuals and estimate cognitive dissonance on the basis of the distance between existing and new beliefs. This study demonstrates how large language models, combined with collective online records of human beliefs, can offer insights into the fundamental principles that govern human belief formation.</p>","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"260 1","pages":""},"PeriodicalIF":21.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semantic embedding space based on large language models for modelling human beliefs\",\"authors\":\"Byunghwee Lee, Rachith Aiyappa, Yong-Yeol Ahn, Haewoon Kwak, Jisun An\",\"doi\":\"10.1038/s41562-025-02228-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beliefs form the foundation of human cognition and decision-making, guiding our actions and social connections. A model encapsulating beliefs and their interrelationships is crucial for understanding their influence on our actions. However, research on belief interplay has often been limited to beliefs related to specific issues and has relied heavily on surveys. Here we propose a method to study the nuanced interplay between thousands of beliefs by leveraging online user debate data and mapping beliefs onto a neural embedding space constructed using a fine-tuned large language model. This belief space captures the interconnectedness and polarization of diverse beliefs across social issues. Our findings show that positions within this belief space predict new beliefs of individuals and estimate cognitive dissonance on the basis of the distance between existing and new beliefs. This study demonstrates how large language models, combined with collective online records of human beliefs, can offer insights into the fundamental principles that govern human belief formation.</p>\",\"PeriodicalId\":19074,\"journal\":{\"name\":\"Nature Human Behaviour\",\"volume\":\"260 1\",\"pages\":\"\"},\"PeriodicalIF\":21.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Human Behaviour\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41562-025-02228-z\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Human Behaviour","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41562-025-02228-z","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A semantic embedding space based on large language models for modelling human beliefs
Beliefs form the foundation of human cognition and decision-making, guiding our actions and social connections. A model encapsulating beliefs and their interrelationships is crucial for understanding their influence on our actions. However, research on belief interplay has often been limited to beliefs related to specific issues and has relied heavily on surveys. Here we propose a method to study the nuanced interplay between thousands of beliefs by leveraging online user debate data and mapping beliefs onto a neural embedding space constructed using a fine-tuned large language model. This belief space captures the interconnectedness and polarization of diverse beliefs across social issues. Our findings show that positions within this belief space predict new beliefs of individuals and estimate cognitive dissonance on the basis of the distance between existing and new beliefs. This study demonstrates how large language models, combined with collective online records of human beliefs, can offer insights into the fundamental principles that govern human belief formation.
期刊介绍:
Nature Human Behaviour is a journal that focuses on publishing research of outstanding significance into any aspect of human behavior.The research can cover various areas such as psychological, biological, and social bases of human behavior.It also includes the study of origins, development, and disorders related to human behavior.The primary aim of the journal is to increase the visibility of research in the field and enhance its societal reach and impact.