{"title":"ALS和FTD中的rna结合蛋白:从致病机制到治疗见解","authors":"Jens Rummens, Sandrine Da Cruz","doi":"10.1186/s13024-025-00851-y","DOIUrl":null,"url":null,"abstract":"Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders with overlapping clinical, genetic and pathological features. A large body of evidence highlights the critical role of RNA-binding proteins (RBPs) – in particular TAR DNA-binding protein 43 (TDP-43) and Fused in sarcoma (FUS) – in the pathogenesis of these diseases. These RBPs normally regulate various key aspects of RNA metabolism in the nervous system (by assembling into transient biomolecular condensates), but undergo cytoplasmic mislocalization and pathological aggregation in ALS and FTD. Furthermore, emerging evidence suggests that RBP-containing aggregates may propagate through the nervous system in a prion-like manner, driving the progression of these neurodegenerative diseases. In this review, we summarize the genetic and neuropathological findings that establish RBP dysfunction as a central theme in ALS and FTD, and discuss the role of disease-associated RBPs in health and disease. Furthermore, we review emerging evidence regarding the prion-like properties of RBP pathology, and explore the downstream mechanisms that drive neurodegeneration. By unraveling the complex role of RBPs in ALS and FTD, we ultimately aim to provide insights into potential avenues for therapeutic intervention in these incurable disorders.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"45 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA-binding proteins in ALS and FTD: from pathogenic mechanisms to therapeutic insights\",\"authors\":\"Jens Rummens, Sandrine Da Cruz\",\"doi\":\"10.1186/s13024-025-00851-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders with overlapping clinical, genetic and pathological features. A large body of evidence highlights the critical role of RNA-binding proteins (RBPs) – in particular TAR DNA-binding protein 43 (TDP-43) and Fused in sarcoma (FUS) – in the pathogenesis of these diseases. These RBPs normally regulate various key aspects of RNA metabolism in the nervous system (by assembling into transient biomolecular condensates), but undergo cytoplasmic mislocalization and pathological aggregation in ALS and FTD. Furthermore, emerging evidence suggests that RBP-containing aggregates may propagate through the nervous system in a prion-like manner, driving the progression of these neurodegenerative diseases. In this review, we summarize the genetic and neuropathological findings that establish RBP dysfunction as a central theme in ALS and FTD, and discuss the role of disease-associated RBPs in health and disease. Furthermore, we review emerging evidence regarding the prion-like properties of RBP pathology, and explore the downstream mechanisms that drive neurodegeneration. By unraveling the complex role of RBPs in ALS and FTD, we ultimately aim to provide insights into potential avenues for therapeutic intervention in these incurable disorders.\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-025-00851-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-025-00851-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
RNA-binding proteins in ALS and FTD: from pathogenic mechanisms to therapeutic insights
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders with overlapping clinical, genetic and pathological features. A large body of evidence highlights the critical role of RNA-binding proteins (RBPs) – in particular TAR DNA-binding protein 43 (TDP-43) and Fused in sarcoma (FUS) – in the pathogenesis of these diseases. These RBPs normally regulate various key aspects of RNA metabolism in the nervous system (by assembling into transient biomolecular condensates), but undergo cytoplasmic mislocalization and pathological aggregation in ALS and FTD. Furthermore, emerging evidence suggests that RBP-containing aggregates may propagate through the nervous system in a prion-like manner, driving the progression of these neurodegenerative diseases. In this review, we summarize the genetic and neuropathological findings that establish RBP dysfunction as a central theme in ALS and FTD, and discuss the role of disease-associated RBPs in health and disease. Furthermore, we review emerging evidence regarding the prion-like properties of RBP pathology, and explore the downstream mechanisms that drive neurodegeneration. By unraveling the complex role of RBPs in ALS and FTD, we ultimately aim to provide insights into potential avenues for therapeutic intervention in these incurable disorders.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.