{"title":"行星停滞盖壳的形成与演化","authors":"Chloé Michaut, Anne Davaille, Stéphane Labrosse","doi":"10.1146/annurev-fluid-112723-055048","DOIUrl":null,"url":null,"abstract":"Earth is the only known planet with plate tectonics, which involves a mobile upper thermal boundary layer. Other terrestrial planets show a one-plate immobile lithosphere, or stagnant lid, that insulates and isolates their interior. Here, we first review the different types of lids that can develop on rocky and icy bodies. As they formed by accretion, involving high-energy impacts, terrestrial planets likely started hot and molten. We examine the process of lid initiation from a magma ocean stage and develop the equations for lid growth. We survey how lateral perturbations in lid and crust thickness can be amplified during their growth and finally discuss the possible processes at the origin of lid rupture and plate generation.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"10 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation and Evolution of Planetary Stagnant Lids and Crusts\",\"authors\":\"Chloé Michaut, Anne Davaille, Stéphane Labrosse\",\"doi\":\"10.1146/annurev-fluid-112723-055048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth is the only known planet with plate tectonics, which involves a mobile upper thermal boundary layer. Other terrestrial planets show a one-plate immobile lithosphere, or stagnant lid, that insulates and isolates their interior. Here, we first review the different types of lids that can develop on rocky and icy bodies. As they formed by accretion, involving high-energy impacts, terrestrial planets likely started hot and molten. We examine the process of lid initiation from a magma ocean stage and develop the equations for lid growth. We survey how lateral perturbations in lid and crust thickness can be amplified during their growth and finally discuss the possible processes at the origin of lid rupture and plate generation.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-112723-055048\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-055048","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Formation and Evolution of Planetary Stagnant Lids and Crusts
Earth is the only known planet with plate tectonics, which involves a mobile upper thermal boundary layer. Other terrestrial planets show a one-plate immobile lithosphere, or stagnant lid, that insulates and isolates their interior. Here, we first review the different types of lids that can develop on rocky and icy bodies. As they formed by accretion, involving high-energy impacts, terrestrial planets likely started hot and molten. We examine the process of lid initiation from a magma ocean stage and develop the equations for lid growth. We survey how lateral perturbations in lid and crust thickness can be amplified during their growth and finally discuss the possible processes at the origin of lid rupture and plate generation.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.