Jose María Belmonte, Miguel Blanquer, Gregorio Bernabé, Fernando Jiménez, José Manuel García
{"title":"造血干细胞移植治疗多发性骨髓瘤的生存风险预测。","authors":"Jose María Belmonte, Miguel Blanquer, Gregorio Bernabé, Fernando Jiménez, José Manuel García","doi":"10.1515/jib-2024-0053","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the application of <i>Survival Analysis</i> (SA) techniques to forecast outcomes after <i>autologous Hematopoietic Stem Cell Transplantation</i> (aHSCT) for <i>Multiple Myeloma</i> (MM). By leveraging six SA models, we examine their predictive capabilities, measured through the <i>Concordance Index</i> (C-index) metric. Beyond evaluating model performance, we analyze feature importance using permutation and SHAP methods, highlighting key clinical factors such as treatment history, disease stage, and prior disease progression or relapse as critical predictors of survival. The findings suggest that while all models performed well based on the C-index, a detailed examination revealed variations in how each model processed data. Specifically, the Coxnet and Random Survival Forest models exhibited a more thorough use of clinical variables, whereas the gradient boosting models appeared to rely on a narrower range of features, potentially limiting their ability to differentiate between patients with comparable profiles. Risk predictions categorized patients into low, moderate, and high-risk levels. For lower-risk patients, the procedure showed positive outcomes, while higher-risk individuals were predicted to have limited survival benefits, recommending alternative treatments. Lastly, we propose future research to expand these models into time-to-event estimations, offering additional support for decision-making by predicting patient life expectancy post-transplant, considering their pre-transplant clinical attributes.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survival risk prediction in hematopoietic stem cell transplantation for multiple myeloma.\",\"authors\":\"Jose María Belmonte, Miguel Blanquer, Gregorio Bernabé, Fernando Jiménez, José Manuel García\",\"doi\":\"10.1515/jib-2024-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates the application of <i>Survival Analysis</i> (SA) techniques to forecast outcomes after <i>autologous Hematopoietic Stem Cell Transplantation</i> (aHSCT) for <i>Multiple Myeloma</i> (MM). By leveraging six SA models, we examine their predictive capabilities, measured through the <i>Concordance Index</i> (C-index) metric. Beyond evaluating model performance, we analyze feature importance using permutation and SHAP methods, highlighting key clinical factors such as treatment history, disease stage, and prior disease progression or relapse as critical predictors of survival. The findings suggest that while all models performed well based on the C-index, a detailed examination revealed variations in how each model processed data. Specifically, the Coxnet and Random Survival Forest models exhibited a more thorough use of clinical variables, whereas the gradient boosting models appeared to rely on a narrower range of features, potentially limiting their ability to differentiate between patients with comparable profiles. Risk predictions categorized patients into low, moderate, and high-risk levels. For lower-risk patients, the procedure showed positive outcomes, while higher-risk individuals were predicted to have limited survival benefits, recommending alternative treatments. Lastly, we propose future research to expand these models into time-to-event estimations, offering additional support for decision-making by predicting patient life expectancy post-transplant, considering their pre-transplant clinical attributes.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2024-0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Survival risk prediction in hematopoietic stem cell transplantation for multiple myeloma.
This paper investigates the application of Survival Analysis (SA) techniques to forecast outcomes after autologous Hematopoietic Stem Cell Transplantation (aHSCT) for Multiple Myeloma (MM). By leveraging six SA models, we examine their predictive capabilities, measured through the Concordance Index (C-index) metric. Beyond evaluating model performance, we analyze feature importance using permutation and SHAP methods, highlighting key clinical factors such as treatment history, disease stage, and prior disease progression or relapse as critical predictors of survival. The findings suggest that while all models performed well based on the C-index, a detailed examination revealed variations in how each model processed data. Specifically, the Coxnet and Random Survival Forest models exhibited a more thorough use of clinical variables, whereas the gradient boosting models appeared to rely on a narrower range of features, potentially limiting their ability to differentiate between patients with comparable profiles. Risk predictions categorized patients into low, moderate, and high-risk levels. For lower-risk patients, the procedure showed positive outcomes, while higher-risk individuals were predicted to have limited survival benefits, recommending alternative treatments. Lastly, we propose future research to expand these models into time-to-event estimations, offering additional support for decision-making by predicting patient life expectancy post-transplant, considering their pre-transplant clinical attributes.