{"title":"分析社交网络中机器学习算法的并行化和结构影响:基于模拟的方法。","authors":"Sepideh Banihashemi, Keren Veksler, Abdolreza Abhari","doi":"10.1177/00375497241298962","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing social media networks is crucial for understanding and uncovering common interests and characteristics among users within human societies. In this context, we simulated a simple application of human interaction in social networks, which involves users following others based on text similarity. We then investigated the effects of various machine learning (ML) algorithms employed in the applications to be used as recommendations to decision-making users. A novel agent-based social network simulator called distributed system and multinode processing is developed to assess the parallelization of the ML algorithms (i.e., K-means clustering, cosine similarity, support vector machine, multilayer perceptron) using bag of words (BoW) term frequency-inverse document frequency vectorization by evaluating their performance when executed in parallel across distributed heterogeneous resources. In addition, this simulator compares the effects of BoW with the Doc2Vec model on network structure by observing the differences in detected communities and resulting network graphs when a selected user follows the recommendations produced by an employed algorithm. Three real datasets were used in the experiments: Twitter, Scientific Research Papers, and Retail. This work's contribution is a unique in-house agent-based simulator developed to analyze the impact of common ML algorithms, including supervised and unsupervised learning, on social networks.</p>","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"101 6","pages":"681-701"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analyzing the parallelization and structural impact of machine learning algorithms in social networks: a simulation-based approach.\",\"authors\":\"Sepideh Banihashemi, Keren Veksler, Abdolreza Abhari\",\"doi\":\"10.1177/00375497241298962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing social media networks is crucial for understanding and uncovering common interests and characteristics among users within human societies. In this context, we simulated a simple application of human interaction in social networks, which involves users following others based on text similarity. We then investigated the effects of various machine learning (ML) algorithms employed in the applications to be used as recommendations to decision-making users. A novel agent-based social network simulator called distributed system and multinode processing is developed to assess the parallelization of the ML algorithms (i.e., K-means clustering, cosine similarity, support vector machine, multilayer perceptron) using bag of words (BoW) term frequency-inverse document frequency vectorization by evaluating their performance when executed in parallel across distributed heterogeneous resources. In addition, this simulator compares the effects of BoW with the Doc2Vec model on network structure by observing the differences in detected communities and resulting network graphs when a selected user follows the recommendations produced by an employed algorithm. Three real datasets were used in the experiments: Twitter, Scientific Research Papers, and Retail. This work's contribution is a unique in-house agent-based simulator developed to analyze the impact of common ML algorithms, including supervised and unsupervised learning, on social networks.</p>\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"101 6\",\"pages\":\"681-701\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497241298962\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497241298962","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analyzing the parallelization and structural impact of machine learning algorithms in social networks: a simulation-based approach.
Analyzing social media networks is crucial for understanding and uncovering common interests and characteristics among users within human societies. In this context, we simulated a simple application of human interaction in social networks, which involves users following others based on text similarity. We then investigated the effects of various machine learning (ML) algorithms employed in the applications to be used as recommendations to decision-making users. A novel agent-based social network simulator called distributed system and multinode processing is developed to assess the parallelization of the ML algorithms (i.e., K-means clustering, cosine similarity, support vector machine, multilayer perceptron) using bag of words (BoW) term frequency-inverse document frequency vectorization by evaluating their performance when executed in parallel across distributed heterogeneous resources. In addition, this simulator compares the effects of BoW with the Doc2Vec model on network structure by observing the differences in detected communities and resulting network graphs when a selected user follows the recommendations produced by an employed algorithm. Three real datasets were used in the experiments: Twitter, Scientific Research Papers, and Retail. This work's contribution is a unique in-house agent-based simulator developed to analyze the impact of common ML algorithms, including supervised and unsupervised learning, on social networks.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.