听觉皮层纹状体回路支持由声音触发的计时来预测未来事件。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-06-02 eCollection Date: 2025-06-01 DOI:10.1371/journal.pbio.3003209
Harini Suri, Karla Salgado-Puga, Yixuan Wang, Nayomie Allen, Kaitlynn Lane, Kyra Granroth, Alberto Olivei, Nathanial Nass, Gideon Rothschild
{"title":"听觉皮层纹状体回路支持由声音触发的计时来预测未来事件。","authors":"Harini Suri, Karla Salgado-Puga, Yixuan Wang, Nayomie Allen, Kaitlynn Lane, Kyra Granroth, Alberto Olivei, Nathanial Nass, Gideon Rothschild","doi":"10.1371/journal.pbio.3003209","DOIUrl":null,"url":null,"abstract":"<p><p>A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, the sound of an approaching vehicle signals when it is safe to cross the street; distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in predictive licking for reward. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impaired animals' ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 6","pages":"e3003209"},"PeriodicalIF":9.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169527/pdf/","citationCount":"0","resultStr":"{\"title\":\"An auditory cortical-striatal circuit supports sound-triggered timing to predict future events.\",\"authors\":\"Harini Suri, Karla Salgado-Puga, Yixuan Wang, Nayomie Allen, Kaitlynn Lane, Kyra Granroth, Alberto Olivei, Nathanial Nass, Gideon Rothschild\",\"doi\":\"10.1371/journal.pbio.3003209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, the sound of an approaching vehicle signals when it is safe to cross the street; distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in predictive licking for reward. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impaired animals' ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 6\",\"pages\":\"e3003209\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003209\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003209","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

听觉感知的一个关键方面是利用声音线索预测未来事件并据此确定行动时间的能力。例如,驶近的车辆发出的声音表明何时可以安全过马路;不同的智能手机通知声音反映了需要在几秒钟内接听的电话,或者可以稍后阅读的文本。其他动物也同样利用声音来计划、安排时间和执行诸如狩猎、躲避捕食和照顾后代等行为。然而,声音引导预测即将到来的重要事件时间的神经机制尚未得到很好的理解。为了解决这一差距,我们在头部固定的小鼠中采用了食欲声音触发的奖励时间预测行为。我们发现,经过这项任务训练的老鼠可以可靠地估计从声音提示到即将到来的奖励的时间,在几秒钟的范围内,正如学习依赖的预测舔舐奖励的准确时间增加所证明的那样。此外,当听觉皮层失活时,小鼠使用声音预测延迟奖励的能力显著受损,这证明了听觉皮层的因果关系。为了识别听觉皮层奖励时间预测的神经生理特征,我们记录了学习和表现这种行为时的局部场电位,发现听觉皮层对声音反应的幅度前瞻性地编码了预期声音奖励时间间隔的持续时间。接下来,我们探索了这些声音触发的时间间隔预测信号如何以及在哪里从听觉皮层传播到时间并启动相应的动作。我们以听觉皮层到后纹状体的单突触投射为目标,发现这些投射的化学发生失活会损害动物预测声音触发的延迟奖励的能力。在任务执行过程中,听觉皮层和后纹状体的同时神经记录显示,在声音提示预测奖励时间间隔期间,这些区域的神经活动是协调的。总的来说,我们的发现确定了听觉皮层纹状体回路支持声音触发的时间预测行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An auditory cortical-striatal circuit supports sound-triggered timing to predict future events.

A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, the sound of an approaching vehicle signals when it is safe to cross the street; distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in predictive licking for reward. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impaired animals' ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信