基于CMIP6的未来气候情景下北半球永久冻土动态。

Q3 Environmental Science
Qi-Xuan Tian, Jian-Zhao Liu, Fan-Chao Zeng, Ming Yang, Qin-Rong Tang, Jie Zheng, Yun-Jiang Zuo, Nan-Nan Wang, Xiao-Chen Yao, Yan-Yu Song
{"title":"基于CMIP6的未来气候情景下北半球永久冻土动态。","authors":"Qi-Xuan Tian, Jian-Zhao Liu, Fan-Chao Zeng, Ming Yang, Qin-Rong Tang, Jie Zheng, Yun-Jiang Zuo, Nan-Nan Wang, Xiao-Chen Yao, Yan-Yu Song","doi":"10.13287/j.1001-9332.202505.026","DOIUrl":null,"url":null,"abstract":"<p><p>Global warming is increasingly affecting permafrost in the Northern Hemisphere, with permafrost degradation being one of the most serious consequences of climate change on the cryosphere. Based on the CMIP6 soil temperature data from 15 different earth system models (ESMs) (ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CESM2-WACCM, EC-Earth3, FGOALS-f3-L, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM), we analyzed the spatiotemporal variations of the permafrost area and active layer thickness (ALT) in the Northern Hemisphere under different future emission scenarios (SSP126, SSP245, SSP370, and SSP585), aiming to clarify the main environmental driving factors affecting the changes in ALT. Results showed significant discrepancies in the simulation capabilities of ALT across ESMs. Based on the analysis of the four optimal performance ESMs (MPI-ESM1-2-LR, ACCESS-ESM1-5, MPI-ESM1-2-HR, and BCC-CSM2-MR), we found that the reduction rate of permafrost area significantly accele-rated from 2015 to 2100 under high emission scenarios (SSP370, SSP585), and the rate of permafrost area decline under SSP585 scenario was eight times that of SSP126 scenario. The permafrost area would increase under SSP126 scenario, but it would continue to decrease under SSP245, SSP370, and SSP585 scenarios. ALT was projected to increase significantly under all four scenarios, with the annual increasing rate under SSP585 being 22 times higher than SSP126. Furthermore, we found that the end time of annual permafrost thawing would gradually change from September to November, leading to an extension of the thawing period. Key factors, such as air temperature, air humidity, vegetation leaf area index, snow cover, and wind speed showed positive effects on permafrost degradation in most regions, while soil moisture showed negative effect. Overall, future greenhouse gas emission controls would offer potential pathways to mitigate the risk of rapid permafrost degradation in the Northern Hemisphere.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"36 5","pages":"1496-1506"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permafrost dynamics in the Northern Hemisphere under future climate scenarios based on CMIP6.\",\"authors\":\"Qi-Xuan Tian, Jian-Zhao Liu, Fan-Chao Zeng, Ming Yang, Qin-Rong Tang, Jie Zheng, Yun-Jiang Zuo, Nan-Nan Wang, Xiao-Chen Yao, Yan-Yu Song\",\"doi\":\"10.13287/j.1001-9332.202505.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global warming is increasingly affecting permafrost in the Northern Hemisphere, with permafrost degradation being one of the most serious consequences of climate change on the cryosphere. Based on the CMIP6 soil temperature data from 15 different earth system models (ESMs) (ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CESM2-WACCM, EC-Earth3, FGOALS-f3-L, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM), we analyzed the spatiotemporal variations of the permafrost area and active layer thickness (ALT) in the Northern Hemisphere under different future emission scenarios (SSP126, SSP245, SSP370, and SSP585), aiming to clarify the main environmental driving factors affecting the changes in ALT. Results showed significant discrepancies in the simulation capabilities of ALT across ESMs. Based on the analysis of the four optimal performance ESMs (MPI-ESM1-2-LR, ACCESS-ESM1-5, MPI-ESM1-2-HR, and BCC-CSM2-MR), we found that the reduction rate of permafrost area significantly accele-rated from 2015 to 2100 under high emission scenarios (SSP370, SSP585), and the rate of permafrost area decline under SSP585 scenario was eight times that of SSP126 scenario. The permafrost area would increase under SSP126 scenario, but it would continue to decrease under SSP245, SSP370, and SSP585 scenarios. ALT was projected to increase significantly under all four scenarios, with the annual increasing rate under SSP585 being 22 times higher than SSP126. Furthermore, we found that the end time of annual permafrost thawing would gradually change from September to November, leading to an extension of the thawing period. Key factors, such as air temperature, air humidity, vegetation leaf area index, snow cover, and wind speed showed positive effects on permafrost degradation in most regions, while soil moisture showed negative effect. Overall, future greenhouse gas emission controls would offer potential pathways to mitigate the risk of rapid permafrost degradation in the Northern Hemisphere.</p>\",\"PeriodicalId\":35942,\"journal\":{\"name\":\"应用生态学报\",\"volume\":\"36 5\",\"pages\":\"1496-1506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用生态学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13287/j.1001-9332.202505.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202505.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

全球变暖正日益影响北半球的永久冻土,永久冻土退化是气候变化对冰冻圈造成的最严重后果之一。基于ACCESS-CM2、ACCESS-ESM1-5、BCC-CSM2-MR、CanESM5、CESM2、CESM2- waccm、EC-Earth3、FGOALS-f3-L、IPSL-CM6A-LR、MIROC6、MPI-ESM1-2-HR、MPI-ESM1-2-LR、MRI-ESM2-0、NorESM2-LM、NorESM2-MM等15种不同地球系统模式(SSP126、SSP245、SSP370和SSP585)的CMIP6土壤温度数据,分析了未来不同排放情景下北半球多年冻土面积和活动层厚度(ALT)的时空变化特征。旨在阐明影响ALT变化的主要环境驱动因素。结果表明,不同esm的ALT模拟能力存在显著差异。通过对4种性能最优的esm (MPI-ESM1-2-LR、access_esm1 - 1-5、MPI-ESM1-2-HR和BCC-CSM2-MR)的分析,发现2015 - 2100年高排放情景(SSP370、SSP585)下的多年冻土面积减少速率显著加快,且SSP585情景下的多年冻土面积减少速率是SSP126情景的8倍。在SSP126情景下,多年冻土区面积将增加,而在SSP245、SSP370和SSP585情景下,多年冻土区面积将继续减少。ALT在4种情景下均显著升高,其中SSP585情景下的年增长率是SSP126情景下的22倍。从9月到11月,多年冻土融化结束时间逐渐变化,融化期延长。气温、空气湿度、植被叶面积指数、积雪、风速等关键因子对冻土带退化的影响为正,而土壤湿度对冻土带退化的影响为负。总体而言,未来的温室气体排放控制将为减轻北半球永久冻土快速退化的风险提供潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permafrost dynamics in the Northern Hemisphere under future climate scenarios based on CMIP6.

Global warming is increasingly affecting permafrost in the Northern Hemisphere, with permafrost degradation being one of the most serious consequences of climate change on the cryosphere. Based on the CMIP6 soil temperature data from 15 different earth system models (ESMs) (ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CESM2-WACCM, EC-Earth3, FGOALS-f3-L, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM), we analyzed the spatiotemporal variations of the permafrost area and active layer thickness (ALT) in the Northern Hemisphere under different future emission scenarios (SSP126, SSP245, SSP370, and SSP585), aiming to clarify the main environmental driving factors affecting the changes in ALT. Results showed significant discrepancies in the simulation capabilities of ALT across ESMs. Based on the analysis of the four optimal performance ESMs (MPI-ESM1-2-LR, ACCESS-ESM1-5, MPI-ESM1-2-HR, and BCC-CSM2-MR), we found that the reduction rate of permafrost area significantly accele-rated from 2015 to 2100 under high emission scenarios (SSP370, SSP585), and the rate of permafrost area decline under SSP585 scenario was eight times that of SSP126 scenario. The permafrost area would increase under SSP126 scenario, but it would continue to decrease under SSP245, SSP370, and SSP585 scenarios. ALT was projected to increase significantly under all four scenarios, with the annual increasing rate under SSP585 being 22 times higher than SSP126. Furthermore, we found that the end time of annual permafrost thawing would gradually change from September to November, leading to an extension of the thawing period. Key factors, such as air temperature, air humidity, vegetation leaf area index, snow cover, and wind speed showed positive effects on permafrost degradation in most regions, while soil moisture showed negative effect. Overall, future greenhouse gas emission controls would offer potential pathways to mitigate the risk of rapid permafrost degradation in the Northern Hemisphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信