不同土地利用类型下土壤氮循环关键过程及其驱动因素的差异

Q3 Environmental Science
Ming Wen, Yu Liu, Chao-Yang Feng, Wei Ji, Zhuo-Qing Li
{"title":"不同土地利用类型下土壤氮循环关键过程及其驱动因素的差异","authors":"Ming Wen, Yu Liu, Chao-Yang Feng, Wei Ji, Zhuo-Qing Li","doi":"10.13287/j.1001-9332.202505.036","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the responses and drivers of soil microbial nitrogen (N)-cycling functional genes under different land-use types, we analyzed five representative ecosystems in the Yellow River alluvial plain: <i>Tamarix chinensis</i> forests, <i>Fraxinus chinensis</i> forests, grasslands, wetlands, and farmlands. With metagenomic sequencing, we quantified the relative abundances of 22 functional genes associated with six critical N-cycling processes. Soil physicochemical properties were characterized. There were significant variations in soil nitrogen (N)-cycling functional gene abundances across land-use types. Wetlands exhibited the highest relative abundances of nitrogen fixation (1.28×10<sup>-5</sup>), nitrification (4.91×10<sup>-4</sup>), and denitrification (7.03×10<sup>-4</sup>) genes, but the lowest assimilatory nitrate reduction potential (1.84×10<sup>-4</sup>). Farmlands showed maximal assimilatory nitrate reduction gene abundance (3.31×10<sup>-4</sup>), while grasslands dominated in ammonification gene expression (2.35×10<sup>-4</sup>), significantly higher than other ecosystems. <i>T. chinensis</i> forests maintained the most constrained N-cycling profile, with minimal nitrification (2.77×10<sup>-4</sup>) and denitrification (5.25×10<sup>-4</sup>) relative gene abundances. Redundancy analysis identified soil total nitrogen, organic carbon, total potassium, and electrical conductivity as the key environmental drivers of these variations. Our findings demonstrated that land-use types could shape microbial N-cycling functional gene abundances by altering soil nutrient conditions, with consequence on fundamental processes of soil nitrogen transformation.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"36 5","pages":"1387-1397"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences of key processes in soil nitrogen cycling and their driving factors under different land-use types.\",\"authors\":\"Ming Wen, Yu Liu, Chao-Yang Feng, Wei Ji, Zhuo-Qing Li\",\"doi\":\"10.13287/j.1001-9332.202505.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the responses and drivers of soil microbial nitrogen (N)-cycling functional genes under different land-use types, we analyzed five representative ecosystems in the Yellow River alluvial plain: <i>Tamarix chinensis</i> forests, <i>Fraxinus chinensis</i> forests, grasslands, wetlands, and farmlands. With metagenomic sequencing, we quantified the relative abundances of 22 functional genes associated with six critical N-cycling processes. Soil physicochemical properties were characterized. There were significant variations in soil nitrogen (N)-cycling functional gene abundances across land-use types. Wetlands exhibited the highest relative abundances of nitrogen fixation (1.28×10<sup>-5</sup>), nitrification (4.91×10<sup>-4</sup>), and denitrification (7.03×10<sup>-4</sup>) genes, but the lowest assimilatory nitrate reduction potential (1.84×10<sup>-4</sup>). Farmlands showed maximal assimilatory nitrate reduction gene abundance (3.31×10<sup>-4</sup>), while grasslands dominated in ammonification gene expression (2.35×10<sup>-4</sup>), significantly higher than other ecosystems. <i>T. chinensis</i> forests maintained the most constrained N-cycling profile, with minimal nitrification (2.77×10<sup>-4</sup>) and denitrification (5.25×10<sup>-4</sup>) relative gene abundances. Redundancy analysis identified soil total nitrogen, organic carbon, total potassium, and electrical conductivity as the key environmental drivers of these variations. Our findings demonstrated that land-use types could shape microbial N-cycling functional gene abundances by altering soil nutrient conditions, with consequence on fundamental processes of soil nitrogen transformation.</p>\",\"PeriodicalId\":35942,\"journal\":{\"name\":\"应用生态学报\",\"volume\":\"36 5\",\"pages\":\"1387-1397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用生态学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13287/j.1001-9332.202505.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202505.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

为探讨不同土地利用类型下土壤微生物氮循环功能基因的响应及其驱动因素,以黄河冲积平原柽柳林、黄曲柳林、草地、湿地和农田5个典型生态系统为研究对象。通过宏基因组测序,我们量化了与六个关键n循环过程相关的22个功能基因的相对丰度。对土壤理化性质进行了表征。不同土地利用类型土壤氮素循环功能基因丰度存在显著差异。湿地的固氮(1.28×10-5)、硝化(4.91×10-4)和反硝化(7.03×10-4)基因相对丰度最高,但吸收硝酸盐还原潜力(1.84×10-4)最低。同化硝态氮还原基因丰度以农田最高(3.31×10-4),氨化基因表达以草地为主(2.35×10-4),显著高于其他生态系统。柽柳林保持了最受限制的n循环剖面,具有最小的硝化作用(2.77×10-4)和反硝化作用(5.25×10-4)相对基因丰度。冗余分析确定土壤全氮、有机碳、全钾和电导率是这些变化的关键环境驱动因素。研究结果表明,土地利用类型可以通过改变土壤养分条件来塑造微生物氮循环功能基因丰度,从而影响土壤氮转化的基本过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differences of key processes in soil nitrogen cycling and their driving factors under different land-use types.

To investigate the responses and drivers of soil microbial nitrogen (N)-cycling functional genes under different land-use types, we analyzed five representative ecosystems in the Yellow River alluvial plain: Tamarix chinensis forests, Fraxinus chinensis forests, grasslands, wetlands, and farmlands. With metagenomic sequencing, we quantified the relative abundances of 22 functional genes associated with six critical N-cycling processes. Soil physicochemical properties were characterized. There were significant variations in soil nitrogen (N)-cycling functional gene abundances across land-use types. Wetlands exhibited the highest relative abundances of nitrogen fixation (1.28×10-5), nitrification (4.91×10-4), and denitrification (7.03×10-4) genes, but the lowest assimilatory nitrate reduction potential (1.84×10-4). Farmlands showed maximal assimilatory nitrate reduction gene abundance (3.31×10-4), while grasslands dominated in ammonification gene expression (2.35×10-4), significantly higher than other ecosystems. T. chinensis forests maintained the most constrained N-cycling profile, with minimal nitrification (2.77×10-4) and denitrification (5.25×10-4) relative gene abundances. Redundancy analysis identified soil total nitrogen, organic carbon, total potassium, and electrical conductivity as the key environmental drivers of these variations. Our findings demonstrated that land-use types could shape microbial N-cycling functional gene abundances by altering soil nutrient conditions, with consequence on fundamental processes of soil nitrogen transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信