{"title":"OpenPheno:一个开放获取、用户友好、基于智能手机的软件平台,用于即时植物表型分析。","authors":"Tianqi Hu, Peng Shen, Yongshuai Zhang, Jiafei Zhang, Xin Li, Chuanzhen Xia, Ping Liu, Hao Lu, Tingting Wu, Zhiguo Han","doi":"10.1186/s13007-025-01395-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plant phenotyping has become increasingly important for advancing plant science, agriculture, and biotechnology. Classic manual methods are labor-intensive and time-consuming, while existing computational tools often require advanced coding skills, high-performance hardware, or PC-based environments, making them inaccessible to non-experts, to resource-constrained users, and to field technicians.</p><p><strong>Results: </strong>To respond to these challenges, we introduce OpenPheno, an open-access, user-friendly, and smartphone-based platform encapsulated within a WeChat Mini-Program for instant plant phenotyping. The platform is designed for ease of use, enabling users to phenotype plant traits quickly and efficiently with only a smartphone at hand. We currently instantiate the use of the platform with tools such as SeedPheno, WheatHeadPheno, LeafAnglePheno, SpikeletPheno, CanopyPheno, TomatoPheno, and CornPheno; each offering specific functionalities such as seed size and count analysis, wheat head detection, leaf angle measurement, spikelet counting, canopy structure analysis, and tomato fruit measurement. In particular, OpenPheno allows developers to contribute new algorithmic tools, further expanding its capabilities to continuously facilitate the plant phenotyping community.</p><p><strong>Conclusions: </strong>By leveraging cloud computing and a widely accessible interface, OpenPheno democratizes plant phenotyping, making advanced tools available to a broader audience, including plant scientists, breeders, and even amateurs. It can function as a role in AI-driven breeding by providing the necessary data for genotype-phenotype analysis, thereby accelerating breeding programs. Its integration with smartphones also positions OpenPheno as a powerful tool in the growing field of mobile-based agricultural technologies, paving the way for more efficient, scalable, and accessible agricultural research and breeding.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"76"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131570/pdf/","citationCount":"0","resultStr":"{\"title\":\"OpenPheno: an open-access, user-friendly, and smartphone-based software platform for instant plant phenotyping.\",\"authors\":\"Tianqi Hu, Peng Shen, Yongshuai Zhang, Jiafei Zhang, Xin Li, Chuanzhen Xia, Ping Liu, Hao Lu, Tingting Wu, Zhiguo Han\",\"doi\":\"10.1186/s13007-025-01395-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Plant phenotyping has become increasingly important for advancing plant science, agriculture, and biotechnology. Classic manual methods are labor-intensive and time-consuming, while existing computational tools often require advanced coding skills, high-performance hardware, or PC-based environments, making them inaccessible to non-experts, to resource-constrained users, and to field technicians.</p><p><strong>Results: </strong>To respond to these challenges, we introduce OpenPheno, an open-access, user-friendly, and smartphone-based platform encapsulated within a WeChat Mini-Program for instant plant phenotyping. The platform is designed for ease of use, enabling users to phenotype plant traits quickly and efficiently with only a smartphone at hand. We currently instantiate the use of the platform with tools such as SeedPheno, WheatHeadPheno, LeafAnglePheno, SpikeletPheno, CanopyPheno, TomatoPheno, and CornPheno; each offering specific functionalities such as seed size and count analysis, wheat head detection, leaf angle measurement, spikelet counting, canopy structure analysis, and tomato fruit measurement. In particular, OpenPheno allows developers to contribute new algorithmic tools, further expanding its capabilities to continuously facilitate the plant phenotyping community.</p><p><strong>Conclusions: </strong>By leveraging cloud computing and a widely accessible interface, OpenPheno democratizes plant phenotyping, making advanced tools available to a broader audience, including plant scientists, breeders, and even amateurs. It can function as a role in AI-driven breeding by providing the necessary data for genotype-phenotype analysis, thereby accelerating breeding programs. Its integration with smartphones also positions OpenPheno as a powerful tool in the growing field of mobile-based agricultural technologies, paving the way for more efficient, scalable, and accessible agricultural research and breeding.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"76\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01395-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01395-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
OpenPheno: an open-access, user-friendly, and smartphone-based software platform for instant plant phenotyping.
Background: Plant phenotyping has become increasingly important for advancing plant science, agriculture, and biotechnology. Classic manual methods are labor-intensive and time-consuming, while existing computational tools often require advanced coding skills, high-performance hardware, or PC-based environments, making them inaccessible to non-experts, to resource-constrained users, and to field technicians.
Results: To respond to these challenges, we introduce OpenPheno, an open-access, user-friendly, and smartphone-based platform encapsulated within a WeChat Mini-Program for instant plant phenotyping. The platform is designed for ease of use, enabling users to phenotype plant traits quickly and efficiently with only a smartphone at hand. We currently instantiate the use of the platform with tools such as SeedPheno, WheatHeadPheno, LeafAnglePheno, SpikeletPheno, CanopyPheno, TomatoPheno, and CornPheno; each offering specific functionalities such as seed size and count analysis, wheat head detection, leaf angle measurement, spikelet counting, canopy structure analysis, and tomato fruit measurement. In particular, OpenPheno allows developers to contribute new algorithmic tools, further expanding its capabilities to continuously facilitate the plant phenotyping community.
Conclusions: By leveraging cloud computing and a widely accessible interface, OpenPheno democratizes plant phenotyping, making advanced tools available to a broader audience, including plant scientists, breeders, and even amateurs. It can function as a role in AI-driven breeding by providing the necessary data for genotype-phenotype analysis, thereby accelerating breeding programs. Its integration with smartphones also positions OpenPheno as a powerful tool in the growing field of mobile-based agricultural technologies, paving the way for more efficient, scalable, and accessible agricultural research and breeding.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.