Wenwen Jiang , Xixin Fan , Hui Wu , Jiankang Song , Chunhe Yang , Zhanzhi Zhao
{"title":"TREM2通过SYK促进BV2细胞的有丝分裂,从而抑制lps诱导的焦亡和炎症。","authors":"Wenwen Jiang , Xixin Fan , Hui Wu , Jiankang Song , Chunhe Yang , Zhanzhi Zhao","doi":"10.1016/j.ntt.2025.107500","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroinflammation is a critical factor in the pathogenesis of postoperative cognitive dysfunction (POCD). Maintaining microglial homeostasis is vital for regulating neuroinflammation, as microglial cell death can trigger an inflammatory response within the central nervous system. The triggering receptor expressed on myeloid cells 2 (TREM2) plays an essential role in supporting cell survival and modulating microglial-driven neuroinflammation. Our previous study indicated that TREM2 overexpression exerts protective effects against neuroinflammation and cognitive deficits in aged mice. However, the precise mechanisms by which TREM2 functions in microglia remain unclear. Consequently, this study aimed to examine the role of TREM2 in lipopolysaccharide (LPS)-induced cell death and neuroinflammation in BV2 cells. This research showed that TREM2 reduces LPS-induced nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and the subsequent release of inflammatory factors through western blot analysis, flow cytometry, and enzyme-linked immunosorbent assay. Recent research has suggested that the loss of spleen tyrosine kinase (SYK), a downstream receptor kinase of TREM2 in microglia, results in exacerbated neuroinflammatory disease. This study further demonstrated that SYK activation via TREM2 treatment exerts neuroprotective effects by mitigating LPS-induced mitochondrial membrane potential damage, facilitating mitophagy, and inhibiting NLRP3-mediated pyroptosis in BV2 cells. Conversely, SYK inhibition by R406 led to microglial cell death and aggravated neuroinflammation, thereby reducing the neuroprotective effects of TREM2. Our findings indicate that TREM2 and SYK mitigate the inflammatory response in LPS-induced BV2 microglia and interfere with pyroptosis by enhancing mitophagy. These findings suggest that TREM2 and SYK may be valuable therapeutic targets for neuroinflammation.</div></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"110 ","pages":"Article 107500"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TREM2 inhibits LPS-induced pyroptosis and inflammation by promoting mitophagy via SYK in BV2 cells\",\"authors\":\"Wenwen Jiang , Xixin Fan , Hui Wu , Jiankang Song , Chunhe Yang , Zhanzhi Zhao\",\"doi\":\"10.1016/j.ntt.2025.107500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuroinflammation is a critical factor in the pathogenesis of postoperative cognitive dysfunction (POCD). Maintaining microglial homeostasis is vital for regulating neuroinflammation, as microglial cell death can trigger an inflammatory response within the central nervous system. The triggering receptor expressed on myeloid cells 2 (TREM2) plays an essential role in supporting cell survival and modulating microglial-driven neuroinflammation. Our previous study indicated that TREM2 overexpression exerts protective effects against neuroinflammation and cognitive deficits in aged mice. However, the precise mechanisms by which TREM2 functions in microglia remain unclear. Consequently, this study aimed to examine the role of TREM2 in lipopolysaccharide (LPS)-induced cell death and neuroinflammation in BV2 cells. This research showed that TREM2 reduces LPS-induced nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and the subsequent release of inflammatory factors through western blot analysis, flow cytometry, and enzyme-linked immunosorbent assay. Recent research has suggested that the loss of spleen tyrosine kinase (SYK), a downstream receptor kinase of TREM2 in microglia, results in exacerbated neuroinflammatory disease. This study further demonstrated that SYK activation via TREM2 treatment exerts neuroprotective effects by mitigating LPS-induced mitochondrial membrane potential damage, facilitating mitophagy, and inhibiting NLRP3-mediated pyroptosis in BV2 cells. Conversely, SYK inhibition by R406 led to microglial cell death and aggravated neuroinflammation, thereby reducing the neuroprotective effects of TREM2. Our findings indicate that TREM2 and SYK mitigate the inflammatory response in LPS-induced BV2 microglia and interfere with pyroptosis by enhancing mitophagy. These findings suggest that TREM2 and SYK may be valuable therapeutic targets for neuroinflammation.</div></div>\",\"PeriodicalId\":19144,\"journal\":{\"name\":\"Neurotoxicology and teratology\",\"volume\":\"110 \",\"pages\":\"Article 107500\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology and teratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892036225000777\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036225000777","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
TREM2 inhibits LPS-induced pyroptosis and inflammation by promoting mitophagy via SYK in BV2 cells
Neuroinflammation is a critical factor in the pathogenesis of postoperative cognitive dysfunction (POCD). Maintaining microglial homeostasis is vital for regulating neuroinflammation, as microglial cell death can trigger an inflammatory response within the central nervous system. The triggering receptor expressed on myeloid cells 2 (TREM2) plays an essential role in supporting cell survival and modulating microglial-driven neuroinflammation. Our previous study indicated that TREM2 overexpression exerts protective effects against neuroinflammation and cognitive deficits in aged mice. However, the precise mechanisms by which TREM2 functions in microglia remain unclear. Consequently, this study aimed to examine the role of TREM2 in lipopolysaccharide (LPS)-induced cell death and neuroinflammation in BV2 cells. This research showed that TREM2 reduces LPS-induced nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and the subsequent release of inflammatory factors through western blot analysis, flow cytometry, and enzyme-linked immunosorbent assay. Recent research has suggested that the loss of spleen tyrosine kinase (SYK), a downstream receptor kinase of TREM2 in microglia, results in exacerbated neuroinflammatory disease. This study further demonstrated that SYK activation via TREM2 treatment exerts neuroprotective effects by mitigating LPS-induced mitochondrial membrane potential damage, facilitating mitophagy, and inhibiting NLRP3-mediated pyroptosis in BV2 cells. Conversely, SYK inhibition by R406 led to microglial cell death and aggravated neuroinflammation, thereby reducing the neuroprotective effects of TREM2. Our findings indicate that TREM2 and SYK mitigate the inflammatory response in LPS-induced BV2 microglia and interfere with pyroptosis by enhancing mitophagy. These findings suggest that TREM2 and SYK may be valuable therapeutic targets for neuroinflammation.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.