数字化类器官:集成流水线高速三维分析类器官结构使用多层次分割和细胞拓扑。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-06-01 Epub Date: 2025-05-14 DOI:10.1038/s41592-025-02685-4
Hui Ting Ong, Esra Karatas, Titouan Poquillon, Gianluca Grenci, Alessandro Furlan, Florian Dilasser, Saburnisha Binte Mohamad Raffi, Damien Blanc, Elise Drimaracci, Dimitri Mikec, Gaetan Galisot, Blake A Johnson, Albert Zou Liu, Cora Thiel, Oliver Ullrich, Victor Racine, Anne Beghin
{"title":"数字化类器官:集成流水线高速三维分析类器官结构使用多层次分割和细胞拓扑。","authors":"Hui Ting Ong, Esra Karatas, Titouan Poquillon, Gianluca Grenci, Alessandro Furlan, Florian Dilasser, Saburnisha Binte Mohamad Raffi, Damien Blanc, Elise Drimaracci, Dimitri Mikec, Gaetan Galisot, Blake A Johnson, Albert Zou Liu, Cora Thiel, Oliver Ullrich, Victor Racine, Anne Beghin","doi":"10.1038/s41592-025-02685-4","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids replicate tissue architecture and function and offer a unique opportunity to explore the impact of external perturbations in vitro. However, conducting large-scale screening procedures to investigate the effects of various stresses on cellular morphology and topology in these systems poses important challenges, including limitations in high-resolution three-dimensional (3D) imaging and accessible 3D analysis platforms. In this study, we introduce an AI-based multilevel segmentation and cellular topology pipeline for screening morphology and topology modifications in 3D cell culture at both the nuclear and cytoplasmic levels, as well as at the whole-organoid scale. We demonstrate the versatility of our approach through proof-of-concept experiments, encompassing well-characterized conditions and poorly explored mechanical stressors such as microgravity. By offering a user-friendly interface named 3DCellScope and a comprehensive set of tools for discovery-like assays in screening 3D organoid models, our pipeline demonstrates wide-ranging potential for applications in biomedical research.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1343-1354"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digitalized organoids: integrated pipeline for high-speed 3D analysis of organoid structures using multilevel segmentation and cellular topology.\",\"authors\":\"Hui Ting Ong, Esra Karatas, Titouan Poquillon, Gianluca Grenci, Alessandro Furlan, Florian Dilasser, Saburnisha Binte Mohamad Raffi, Damien Blanc, Elise Drimaracci, Dimitri Mikec, Gaetan Galisot, Blake A Johnson, Albert Zou Liu, Cora Thiel, Oliver Ullrich, Victor Racine, Anne Beghin\",\"doi\":\"10.1038/s41592-025-02685-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids replicate tissue architecture and function and offer a unique opportunity to explore the impact of external perturbations in vitro. However, conducting large-scale screening procedures to investigate the effects of various stresses on cellular morphology and topology in these systems poses important challenges, including limitations in high-resolution three-dimensional (3D) imaging and accessible 3D analysis platforms. In this study, we introduce an AI-based multilevel segmentation and cellular topology pipeline for screening morphology and topology modifications in 3D cell culture at both the nuclear and cytoplasmic levels, as well as at the whole-organoid scale. We demonstrate the versatility of our approach through proof-of-concept experiments, encompassing well-characterized conditions and poorly explored mechanical stressors such as microgravity. By offering a user-friendly interface named 3DCellScope and a comprehensive set of tools for discovery-like assays in screening 3D organoid models, our pipeline demonstrates wide-ranging potential for applications in biomedical research.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1343-1354\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02685-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02685-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

类器官复制组织结构和功能,并提供了一个独特的机会来探索体外外部扰动的影响。然而,在这些系统中进行大规模筛选程序以研究各种应力对细胞形态和拓扑结构的影响存在重大挑战,包括高分辨率三维(3D)成像和可访问的3D分析平台的限制。在这项研究中,我们引入了一种基于人工智能的多层次分割和细胞拓扑管道,用于在细胞核和细胞质水平以及整个类器官尺度上筛选3D细胞培养中的形态和拓扑修饰。我们通过概念验证实验证明了我们方法的多功能性,包括良好表征的条件和未充分探索的机械应力源(如微重力)。通过提供一个名为3DCellScope的用户友好界面和一套全面的工具,用于筛选3D类器官模型的发现式分析,我们的产品线显示了在生物医学研究中的广泛应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digitalized organoids: integrated pipeline for high-speed 3D analysis of organoid structures using multilevel segmentation and cellular topology.

Organoids replicate tissue architecture and function and offer a unique opportunity to explore the impact of external perturbations in vitro. However, conducting large-scale screening procedures to investigate the effects of various stresses on cellular morphology and topology in these systems poses important challenges, including limitations in high-resolution three-dimensional (3D) imaging and accessible 3D analysis platforms. In this study, we introduce an AI-based multilevel segmentation and cellular topology pipeline for screening morphology and topology modifications in 3D cell culture at both the nuclear and cytoplasmic levels, as well as at the whole-organoid scale. We demonstrate the versatility of our approach through proof-of-concept experiments, encompassing well-characterized conditions and poorly explored mechanical stressors such as microgravity. By offering a user-friendly interface named 3DCellScope and a comprehensive set of tools for discovery-like assays in screening 3D organoid models, our pipeline demonstrates wide-ranging potential for applications in biomedical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信