{"title":"细菌核糖体的异质性促进了对压力的快速反应。","authors":"Yi-Lin Shen, Lei Xu, Ying Zhou, Bang-Ce Ye","doi":"10.1128/jb.00058-25","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria live under constant pressure from external signals, necessitating a rapid capacity to reprogram their metabolism. The ribosome, once considered a uniform and static entity, is now recognized for its compositional heterogeneity. Despite its prevalence, the role of this heterogeneity in regulating bacterial translation remains incompletely understood. This review explores how ribosomal heterogeneity may serve as a conserved mechanism for fine-tuning gene expression, enabling swift adjustments to environmental stress. We present recent findings on the regulatory potential of ribosome heterogeneity and its broader implications for bacterial adaptation, pathogenesis, and the development of novel antimicrobial strategies.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0005825"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial ribosome heterogeneity facilitates rapid response to stress.\",\"authors\":\"Yi-Lin Shen, Lei Xu, Ying Zhou, Bang-Ce Ye\",\"doi\":\"10.1128/jb.00058-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria live under constant pressure from external signals, necessitating a rapid capacity to reprogram their metabolism. The ribosome, once considered a uniform and static entity, is now recognized for its compositional heterogeneity. Despite its prevalence, the role of this heterogeneity in regulating bacterial translation remains incompletely understood. This review explores how ribosomal heterogeneity may serve as a conserved mechanism for fine-tuning gene expression, enabling swift adjustments to environmental stress. We present recent findings on the regulatory potential of ribosome heterogeneity and its broader implications for bacterial adaptation, pathogenesis, and the development of novel antimicrobial strategies.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0005825\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00058-25\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00058-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bacterial ribosome heterogeneity facilitates rapid response to stress.
Bacteria live under constant pressure from external signals, necessitating a rapid capacity to reprogram their metabolism. The ribosome, once considered a uniform and static entity, is now recognized for its compositional heterogeneity. Despite its prevalence, the role of this heterogeneity in regulating bacterial translation remains incompletely understood. This review explores how ribosomal heterogeneity may serve as a conserved mechanism for fine-tuning gene expression, enabling swift adjustments to environmental stress. We present recent findings on the regulatory potential of ribosome heterogeneity and its broader implications for bacterial adaptation, pathogenesis, and the development of novel antimicrobial strategies.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.