新生儿脑微血管超声成像:从先进多普勒到超分辨率。

IF 3.7 2区 工程技术 Q1 ACOUSTICS
Laura May Davis;David Q. Le;Santiago Martinez-Correa;Misun Hwang
{"title":"新生儿脑微血管超声成像:从先进多普勒到超分辨率。","authors":"Laura May Davis;David Q. Le;Santiago Martinez-Correa;Misun Hwang","doi":"10.1109/TUFFC.2025.3573143","DOIUrl":null,"url":null,"abstract":"In imaging the neonatal brain, overcoming the diffraction limit of conventional ultrasound is required to achieve images of sufficient spatial resolution. Super-resolution imaging uses ultrasound localization microscopy to image inert microbubble contrast at high frame rates, allowing exquisite detail and flow information on intracranial vessels. While currently more common in research settings, super-resolution imaging is beginning to see selective clinical use. In contrast, advanced Doppler techniques, which do not require contrast, offer flow imaging far better than that of conventional Doppler and are readily available in the clinical setting. We discuss the pros and cons of both modalities and the promising applications of both in the clinical setting with a series of case examples.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 7","pages":"879-888"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microvascular Ultrasound Imaging in the Neonatal Brain: From Advanced Doppler to Super-Resolution\",\"authors\":\"Laura May Davis;David Q. Le;Santiago Martinez-Correa;Misun Hwang\",\"doi\":\"10.1109/TUFFC.2025.3573143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In imaging the neonatal brain, overcoming the diffraction limit of conventional ultrasound is required to achieve images of sufficient spatial resolution. Super-resolution imaging uses ultrasound localization microscopy to image inert microbubble contrast at high frame rates, allowing exquisite detail and flow information on intracranial vessels. While currently more common in research settings, super-resolution imaging is beginning to see selective clinical use. In contrast, advanced Doppler techniques, which do not require contrast, offer flow imaging far better than that of conventional Doppler and are readily available in the clinical setting. We discuss the pros and cons of both modalities and the promising applications of both in the clinical setting with a series of case examples.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"72 7\",\"pages\":\"879-888\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021007/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11021007/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在新生儿脑成像中,需要克服常规超声的衍射极限,以获得足够的空间分辨率的图像。超分辨率成像使用超声定位显微镜在高帧率下成像惰性微泡对比度,允许颅内血管的精细细节和血流信息。然而,这主要是一种基于研究的模式。相比之下,先进的多普勒技术,不需要对比,提供比传统多普勒更好的血流成像,并且在临床环境中很容易获得。我们讨论的优点和缺点的两种模式,并有希望的应用在临床设置与一系列的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microvascular Ultrasound Imaging in the Neonatal Brain: From Advanced Doppler to Super-Resolution
In imaging the neonatal brain, overcoming the diffraction limit of conventional ultrasound is required to achieve images of sufficient spatial resolution. Super-resolution imaging uses ultrasound localization microscopy to image inert microbubble contrast at high frame rates, allowing exquisite detail and flow information on intracranial vessels. While currently more common in research settings, super-resolution imaging is beginning to see selective clinical use. In contrast, advanced Doppler techniques, which do not require contrast, offer flow imaging far better than that of conventional Doppler and are readily available in the clinical setting. We discuss the pros and cons of both modalities and the promising applications of both in the clinical setting with a series of case examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信