Jing Huang, M David Miller, Anne Corinne Huggins-Manley, Walter L Leite, Herman T Knopf, Albert D Ritzhaupt
{"title":"评估基于测试的多同构项目的正则化微分项目功能方法的性能。","authors":"Jing Huang, M David Miller, Anne Corinne Huggins-Manley, Walter L Leite, Herman T Knopf, Albert D Ritzhaupt","doi":"10.1177/00131644251342512","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of testlets on regularization-based differential item functioning (DIF) detection in polytomous items, focusing on the generalized partial credit model with lasso penalization (GPCMlasso) DIF method. Five factors were manipulated: sample size, magnitude of testlet effect, magnitude of DIF, number of DIF items, and type of DIF-inducing covariates. Model performance was evaluated using false-positive rate (FPR) and true-positive rate (TPR). Results showed that the simulation had effective control of FPR across conditions, while the TPR was differentially influenced by the manipulated factors. Generally, the small testlet effect did not noticeably affect the GPCMlasso model's performance regarding FPR and TPR. The findings provide evidence of the effectiveness of the GPCMlasso method for DIF detection in polytomous items when testlets were present. The implications for future research and limitations were also discussed.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251342512"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Performance of a Regularized Differential Item Functioning Method for Testlet-Based Polytomous Items.\",\"authors\":\"Jing Huang, M David Miller, Anne Corinne Huggins-Manley, Walter L Leite, Herman T Knopf, Albert D Ritzhaupt\",\"doi\":\"10.1177/00131644251342512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the effect of testlets on regularization-based differential item functioning (DIF) detection in polytomous items, focusing on the generalized partial credit model with lasso penalization (GPCMlasso) DIF method. Five factors were manipulated: sample size, magnitude of testlet effect, magnitude of DIF, number of DIF items, and type of DIF-inducing covariates. Model performance was evaluated using false-positive rate (FPR) and true-positive rate (TPR). Results showed that the simulation had effective control of FPR across conditions, while the TPR was differentially influenced by the manipulated factors. Generally, the small testlet effect did not noticeably affect the GPCMlasso model's performance regarding FPR and TPR. The findings provide evidence of the effectiveness of the GPCMlasso method for DIF detection in polytomous items when testlets were present. The implications for future research and limitations were also discussed.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\" \",\"pages\":\"00131644251342512\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644251342512\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251342512","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Evaluating the Performance of a Regularized Differential Item Functioning Method for Testlet-Based Polytomous Items.
This study investigated the effect of testlets on regularization-based differential item functioning (DIF) detection in polytomous items, focusing on the generalized partial credit model with lasso penalization (GPCMlasso) DIF method. Five factors were manipulated: sample size, magnitude of testlet effect, magnitude of DIF, number of DIF items, and type of DIF-inducing covariates. Model performance was evaluated using false-positive rate (FPR) and true-positive rate (TPR). Results showed that the simulation had effective control of FPR across conditions, while the TPR was differentially influenced by the manipulated factors. Generally, the small testlet effect did not noticeably affect the GPCMlasso model's performance regarding FPR and TPR. The findings provide evidence of the effectiveness of the GPCMlasso method for DIF detection in polytomous items when testlets were present. The implications for future research and limitations were also discussed.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.