Maria Riedersberger, Madalina Woltereck, Paul J Wagner, Kristin Focke, Sarina Höller, Angelika Lampert, Christian Alzheimer, Stefan Düsterhöft, Tobias Huth
{"title":"开放通道阻断肽在NaV1.5中的作用ΔKPQ。","authors":"Maria Riedersberger, Madalina Woltereck, Paul J Wagner, Kristin Focke, Sarina Höller, Angelika Lampert, Christian Alzheimer, Stefan Düsterhöft, Tobias Huth","doi":"10.1016/j.bpj.2025.05.030","DOIUrl":null,"url":null,"abstract":"<p><p>Resurgent sodium currents (INaRs) result from an unorthodox gating behavior of voltage-activated sodium channels (Na<sub>V</sub>), allowing transient re-openings during repolarization from an apparently inactivated state. In both native cells not normally exhibiting INaR and in heterologous expression systems, intracellular delivery of small positively charged peptides through the recording pipette elicits robust INaRs, suggesting that INaRs arise from a peptide-mediated open-channel block that is relieved upon repolarization. Here we examined the hNa<sub>V</sub>1.5 ΔKPQ mutant, which causes a long QT syndrome in the heart, to probe the open-channel block hypothesis of INaR in a channel with altered inactivation properties due to the deletion near the canonical inactivation gate. We investigated INaRs with peptides derived from the hNa<sub>V</sub>β4 subunit, FGF13-1a and FGF14-1a, using the HEK293T expression system. Surprisingly, the peptides not only gave rise to pronounced INaRs with unusually fast kinetics but also altered the late sodium current of the channel mutant. To elucidate the molecular basis of these effects, we employed AlphaFold modeling of hNa<sub>V</sub>1.5, incorporating the ΔKPQ mutation and the β4 peptide. This model supports the open-channel block mechanism of INaR and its mutual exclusivity with fast inactivation. It also demonstrates a lack of interaction between the IFM linker and the C-terminal domain in hNa<sub>V</sub>1.5 ΔKPQ, offering a plausible explanation for why the peptides are capable of affecting both INaR and persistent currents (INaPs). Finally, the peptides generated a considerable increase in repolarization-associated Na<sup>+</sup> currents with the ΔKPQ mutant, highlighting the presumed impact of pathologically enhanced INaR on cardiac electrophysiology.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"2263-2279"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of open-channel blocking peptides in Na<sub>V</sub>1.5 ΔKPQ.\",\"authors\":\"Maria Riedersberger, Madalina Woltereck, Paul J Wagner, Kristin Focke, Sarina Höller, Angelika Lampert, Christian Alzheimer, Stefan Düsterhöft, Tobias Huth\",\"doi\":\"10.1016/j.bpj.2025.05.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resurgent sodium currents (INaRs) result from an unorthodox gating behavior of voltage-activated sodium channels (Na<sub>V</sub>), allowing transient re-openings during repolarization from an apparently inactivated state. In both native cells not normally exhibiting INaR and in heterologous expression systems, intracellular delivery of small positively charged peptides through the recording pipette elicits robust INaRs, suggesting that INaRs arise from a peptide-mediated open-channel block that is relieved upon repolarization. Here we examined the hNa<sub>V</sub>1.5 ΔKPQ mutant, which causes a long QT syndrome in the heart, to probe the open-channel block hypothesis of INaR in a channel with altered inactivation properties due to the deletion near the canonical inactivation gate. We investigated INaRs with peptides derived from the hNa<sub>V</sub>β4 subunit, FGF13-1a and FGF14-1a, using the HEK293T expression system. Surprisingly, the peptides not only gave rise to pronounced INaRs with unusually fast kinetics but also altered the late sodium current of the channel mutant. To elucidate the molecular basis of these effects, we employed AlphaFold modeling of hNa<sub>V</sub>1.5, incorporating the ΔKPQ mutation and the β4 peptide. This model supports the open-channel block mechanism of INaR and its mutual exclusivity with fast inactivation. It also demonstrates a lack of interaction between the IFM linker and the C-terminal domain in hNa<sub>V</sub>1.5 ΔKPQ, offering a plausible explanation for why the peptides are capable of affecting both INaR and persistent currents (INaPs). Finally, the peptides generated a considerable increase in repolarization-associated Na<sup>+</sup> currents with the ΔKPQ mutant, highlighting the presumed impact of pathologically enhanced INaR on cardiac electrophysiology.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"2263-2279\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.05.030\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.05.030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Effects of open-channel blocking peptides in NaV1.5 ΔKPQ.
Resurgent sodium currents (INaRs) result from an unorthodox gating behavior of voltage-activated sodium channels (NaV), allowing transient re-openings during repolarization from an apparently inactivated state. In both native cells not normally exhibiting INaR and in heterologous expression systems, intracellular delivery of small positively charged peptides through the recording pipette elicits robust INaRs, suggesting that INaRs arise from a peptide-mediated open-channel block that is relieved upon repolarization. Here we examined the hNaV1.5 ΔKPQ mutant, which causes a long QT syndrome in the heart, to probe the open-channel block hypothesis of INaR in a channel with altered inactivation properties due to the deletion near the canonical inactivation gate. We investigated INaRs with peptides derived from the hNaVβ4 subunit, FGF13-1a and FGF14-1a, using the HEK293T expression system. Surprisingly, the peptides not only gave rise to pronounced INaRs with unusually fast kinetics but also altered the late sodium current of the channel mutant. To elucidate the molecular basis of these effects, we employed AlphaFold modeling of hNaV1.5, incorporating the ΔKPQ mutation and the β4 peptide. This model supports the open-channel block mechanism of INaR and its mutual exclusivity with fast inactivation. It also demonstrates a lack of interaction between the IFM linker and the C-terminal domain in hNaV1.5 ΔKPQ, offering a plausible explanation for why the peptides are capable of affecting both INaR and persistent currents (INaPs). Finally, the peptides generated a considerable increase in repolarization-associated Na+ currents with the ΔKPQ mutant, highlighting the presumed impact of pathologically enhanced INaR on cardiac electrophysiology.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.