{"title":"CRAC通道与外周器官系统的病理生理。","authors":"Rajesh Bhardwaj, Anant B Parekh","doi":"10.1042/BST20253062","DOIUrl":null,"url":null,"abstract":"<p><p>A rise in cytosolic Ca2+ is used as a key signalling messenger in eukaryotic cells. The Ca2+ signal drives life and death and controls myriad responses in between. Inherent in the use of such a multifarious signal is the danger of disease, arising from dysregulated Ca2+ signalling. One ancient, highly conserved and widespread Ca2+ entry pathway is the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. Mutations in STIM1 and ORAI1, the genes that encode the functional channel, are tightly linked to a CRAC channelopathy in humans, which encompasses severe combined immune deficiency, myopathy and anhidrotic ectodermal dysplasia. Moreover, sustained Ca2+ entry through the channels leads to a range of systemic disorders, including acute pancreatitis, asthma and inflammatory bowel disease. In this review, we describe how aberrant CRAC channel activity causes a range of diseases, highlighting commonalities between these diverse pathologies.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"627-642"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224913/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRAC channels and patho-physiology of peripheral organ systems.\",\"authors\":\"Rajesh Bhardwaj, Anant B Parekh\",\"doi\":\"10.1042/BST20253062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A rise in cytosolic Ca2+ is used as a key signalling messenger in eukaryotic cells. The Ca2+ signal drives life and death and controls myriad responses in between. Inherent in the use of such a multifarious signal is the danger of disease, arising from dysregulated Ca2+ signalling. One ancient, highly conserved and widespread Ca2+ entry pathway is the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. Mutations in STIM1 and ORAI1, the genes that encode the functional channel, are tightly linked to a CRAC channelopathy in humans, which encompasses severe combined immune deficiency, myopathy and anhidrotic ectodermal dysplasia. Moreover, sustained Ca2+ entry through the channels leads to a range of systemic disorders, including acute pancreatitis, asthma and inflammatory bowel disease. In this review, we describe how aberrant CRAC channel activity causes a range of diseases, highlighting commonalities between these diverse pathologies.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"627-642\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20253062\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CRAC channels and patho-physiology of peripheral organ systems.
A rise in cytosolic Ca2+ is used as a key signalling messenger in eukaryotic cells. The Ca2+ signal drives life and death and controls myriad responses in between. Inherent in the use of such a multifarious signal is the danger of disease, arising from dysregulated Ca2+ signalling. One ancient, highly conserved and widespread Ca2+ entry pathway is the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. Mutations in STIM1 and ORAI1, the genes that encode the functional channel, are tightly linked to a CRAC channelopathy in humans, which encompasses severe combined immune deficiency, myopathy and anhidrotic ectodermal dysplasia. Moreover, sustained Ca2+ entry through the channels leads to a range of systemic disorders, including acute pancreatitis, asthma and inflammatory bowel disease. In this review, we describe how aberrant CRAC channel activity causes a range of diseases, highlighting commonalities between these diverse pathologies.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.