Albert Carné, David R Vieites, Matthijs P van den Burg
{"title":"在凭证我们(希望)信任:揭示隐藏的错误在基因库的四足动物分类基础。","authors":"Albert Carné, David R Vieites, Matthijs P van den Burg","doi":"10.1111/mec.17812","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic repositories are invaluable resources foundational to various biological disciplines. While their data and metadata reliability are essential for robust research outcomes, numerous studies have highlighted data quality and consistency issues. Here, we detect and quantify errors at the most fundamental level by analysing the congruence of sequences derived from the same genetic marker and specimen voucher across tetrapods. Our analysis reveals that 32% of re-sequenced vouchers (with identical field or museum numbers) yield unequal sequences, ranging from a few mutations to significant divergences (0.06%-33.95%). These divergences may result from sample misidentification, labelling errors, fidelity disparities between sequencing methods, or contamination at various stages of the research process. Our findings demonstrate errors within GenBank at its most basal level and suggest that, although undetectable, a similar error rate likely exists in non-re-sequenced data. These previously overlooked errors are concerning because they arise from replicated experiments, which are uncommon, and raise serious questions about the reliability of non-re-sequenced specimens. Such errors can compromise the accuracy of biodiversity assessments (e.g., taxonomic assessment, eDNA and barcoding), phylogenetic analyses and conservation planning by artificially inflating the intraspecific divergence or misidentifying (to-be-described) species. Additionally, the accuracy of large-scale biological studies that rely on such data can be compromised. Our concerning results call for protocols ensuring sample traceability to the specimens or tissues during the whole process of data generation, analysis and deposition in a database. We propose a third-party annotation system for individual GenBank records that would allow flagging common errors and alert both the original submitter and all users to potential problems without modifying the original records.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17812"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vouchers We (Hope to) Trust: Unveiling Hidden Errors in GenBank's Tetrapod Taxonomic Foundations.\",\"authors\":\"Albert Carné, David R Vieites, Matthijs P van den Burg\",\"doi\":\"10.1111/mec.17812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic repositories are invaluable resources foundational to various biological disciplines. While their data and metadata reliability are essential for robust research outcomes, numerous studies have highlighted data quality and consistency issues. Here, we detect and quantify errors at the most fundamental level by analysing the congruence of sequences derived from the same genetic marker and specimen voucher across tetrapods. Our analysis reveals that 32% of re-sequenced vouchers (with identical field or museum numbers) yield unequal sequences, ranging from a few mutations to significant divergences (0.06%-33.95%). These divergences may result from sample misidentification, labelling errors, fidelity disparities between sequencing methods, or contamination at various stages of the research process. Our findings demonstrate errors within GenBank at its most basal level and suggest that, although undetectable, a similar error rate likely exists in non-re-sequenced data. These previously overlooked errors are concerning because they arise from replicated experiments, which are uncommon, and raise serious questions about the reliability of non-re-sequenced specimens. Such errors can compromise the accuracy of biodiversity assessments (e.g., taxonomic assessment, eDNA and barcoding), phylogenetic analyses and conservation planning by artificially inflating the intraspecific divergence or misidentifying (to-be-described) species. Additionally, the accuracy of large-scale biological studies that rely on such data can be compromised. Our concerning results call for protocols ensuring sample traceability to the specimens or tissues during the whole process of data generation, analysis and deposition in a database. We propose a third-party annotation system for individual GenBank records that would allow flagging common errors and alert both the original submitter and all users to potential problems without modifying the original records.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17812\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17812\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17812","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Vouchers We (Hope to) Trust: Unveiling Hidden Errors in GenBank's Tetrapod Taxonomic Foundations.
Genetic repositories are invaluable resources foundational to various biological disciplines. While their data and metadata reliability are essential for robust research outcomes, numerous studies have highlighted data quality and consistency issues. Here, we detect and quantify errors at the most fundamental level by analysing the congruence of sequences derived from the same genetic marker and specimen voucher across tetrapods. Our analysis reveals that 32% of re-sequenced vouchers (with identical field or museum numbers) yield unequal sequences, ranging from a few mutations to significant divergences (0.06%-33.95%). These divergences may result from sample misidentification, labelling errors, fidelity disparities between sequencing methods, or contamination at various stages of the research process. Our findings demonstrate errors within GenBank at its most basal level and suggest that, although undetectable, a similar error rate likely exists in non-re-sequenced data. These previously overlooked errors are concerning because they arise from replicated experiments, which are uncommon, and raise serious questions about the reliability of non-re-sequenced specimens. Such errors can compromise the accuracy of biodiversity assessments (e.g., taxonomic assessment, eDNA and barcoding), phylogenetic analyses and conservation planning by artificially inflating the intraspecific divergence or misidentifying (to-be-described) species. Additionally, the accuracy of large-scale biological studies that rely on such data can be compromised. Our concerning results call for protocols ensuring sample traceability to the specimens or tissues during the whole process of data generation, analysis and deposition in a database. We propose a third-party annotation system for individual GenBank records that would allow flagging common errors and alert both the original submitter and all users to potential problems without modifying the original records.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms