Seonghyuk Park, Youngtaek Kim, Jungseub Lee, Sangmin Jung, Jongho Hong, Suryong Kim, Seung-Ryeol Lee, Jiyoung Song, Siwan Park, Young Sun Oh, Jihoon Ko, Noo Li Jeon
{"title":"流动影响:无泵,高通量3D细胞培养平台的协同血管生成效应的调查。抛光工艺。11/2025)","authors":"Seonghyuk Park, Youngtaek Kim, Jungseub Lee, Sangmin Jung, Jongho Hong, Suryong Kim, Seung-Ryeol Lee, Jiyoung Song, Siwan Park, Young Sun Oh, Jihoon Ko, Noo Li Jeon","doi":"10.1002/admt.202570060","DOIUrl":null,"url":null,"abstract":"<p><b>Flow-IMPACT</b></p><p>In article number 2401526, Noo Li Jeon and co-workers implement a pumpless microfluidic platform that stably reproduces interstitial flow within physiological velocity ranges. Such flow is achieved through engineered hydraulic resistance using serpentine channels and hydrogels. The study elucidates how flow-mediated transport and mechanical cues regulate vascularization, providing a valuable framework for microenvironmental and tissue engineering research.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 11","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202570060","citationCount":"0","resultStr":"{\"title\":\"Flow-IMPACT: A Pumpless, High-Throughput 3D Cell Culture Platform for Investigation of Synergistic Angiogenic Effects (Adv. Mater. Technol. 11/2025)\",\"authors\":\"Seonghyuk Park, Youngtaek Kim, Jungseub Lee, Sangmin Jung, Jongho Hong, Suryong Kim, Seung-Ryeol Lee, Jiyoung Song, Siwan Park, Young Sun Oh, Jihoon Ko, Noo Li Jeon\",\"doi\":\"10.1002/admt.202570060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Flow-IMPACT</b></p><p>In article number 2401526, Noo Li Jeon and co-workers implement a pumpless microfluidic platform that stably reproduces interstitial flow within physiological velocity ranges. Such flow is achieved through engineered hydraulic resistance using serpentine channels and hydrogels. The study elucidates how flow-mediated transport and mechanical cues regulate vascularization, providing a valuable framework for microenvironmental and tissue engineering research.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 11\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202570060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202570060\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202570060","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在文章编号2401526中,Noo Li Jeon及其同事实现了一种无泵微流体平台,该平台可以在生理速度范围内稳定地再现间隙流动。这种流动是通过使用蛇形通道和水凝胶的工程水力阻力来实现的。该研究阐明了流动介导的运输和机械线索如何调节血管化,为微环境和组织工程研究提供了有价值的框架。
Flow-IMPACT: A Pumpless, High-Throughput 3D Cell Culture Platform for Investigation of Synergistic Angiogenic Effects (Adv. Mater. Technol. 11/2025)
Flow-IMPACT
In article number 2401526, Noo Li Jeon and co-workers implement a pumpless microfluidic platform that stably reproduces interstitial flow within physiological velocity ranges. Such flow is achieved through engineered hydraulic resistance using serpentine channels and hydrogels. The study elucidates how flow-mediated transport and mechanical cues regulate vascularization, providing a valuable framework for microenvironmental and tissue engineering research.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.