存在对抗性扰动的xai驱动的弹性图像分类

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Amir Hosein Oveis, Elisa Giusti, Alessandro Cantelli-Forti, Marco Martorella
{"title":"存在对抗性扰动的xai驱动的弹性图像分类","authors":"Amir Hosein Oveis,&nbsp;Elisa Giusti,&nbsp;Alessandro Cantelli-Forti,&nbsp;Marco Martorella","doi":"10.1049/rsn2.70041","DOIUrl":null,"url":null,"abstract":"<p>Deep learning (DL) architectures, although being employed in widespread applications, often raise concerns about their trustworthiness due to their opacity in their decision-making processes. Explainable AI (XAI) emerges as a promising solution to mitigate these concerns by providing interpretable rationales for DL network outputs. In domains where risk tolerance is minimal, ensuring trustworthy predictions is essential. This study introduces expmax, a new classifier rooted in XAI principles, designed for multiclass classification problems using convolutional neural network (CNN) architectures. The key strength of expmax, compared to the conventional softmax, lies in its ability to evaluate the model's focus on salient features of targets rather than being distracted by unrelated patterns from the background. This characteristic allows expmax for increased resilience, especially in scenarios with adversarial samples, where conventional classifiers may fail to correctly recognise the target class. The methodology behind expmax is based on fitting a regressor with features that are extracted from the training dataset using the SHapley Additive exPlanations (SHAP) algorithm, along with a target mask area detection algorithm. By using the SHAP-based extracted features, expmax reduces vulnerabilities to perturbations introduced by adversarial inputs. The method is validated on the MTARSI dataset for aircraft recognition in remote sensing images.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70041","citationCount":"0","resultStr":"{\"title\":\"XAI-Driven Resilient Image Classification in the Presence of Adversarial Perturbations\",\"authors\":\"Amir Hosein Oveis,&nbsp;Elisa Giusti,&nbsp;Alessandro Cantelli-Forti,&nbsp;Marco Martorella\",\"doi\":\"10.1049/rsn2.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning (DL) architectures, although being employed in widespread applications, often raise concerns about their trustworthiness due to their opacity in their decision-making processes. Explainable AI (XAI) emerges as a promising solution to mitigate these concerns by providing interpretable rationales for DL network outputs. In domains where risk tolerance is minimal, ensuring trustworthy predictions is essential. This study introduces expmax, a new classifier rooted in XAI principles, designed for multiclass classification problems using convolutional neural network (CNN) architectures. The key strength of expmax, compared to the conventional softmax, lies in its ability to evaluate the model's focus on salient features of targets rather than being distracted by unrelated patterns from the background. This characteristic allows expmax for increased resilience, especially in scenarios with adversarial samples, where conventional classifiers may fail to correctly recognise the target class. The methodology behind expmax is based on fitting a regressor with features that are extracted from the training dataset using the SHapley Additive exPlanations (SHAP) algorithm, along with a target mask area detection algorithm. By using the SHAP-based extracted features, expmax reduces vulnerabilities to perturbations introduced by adversarial inputs. The method is validated on the MTARSI dataset for aircraft recognition in remote sensing images.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70041\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70041","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)架构虽然被广泛应用,但由于其决策过程的不透明性,经常引起人们对其可信度的担忧。可解释的人工智能(XAI)通过为深度学习网络输出提供可解释的基本原理,成为缓解这些担忧的有希望的解决方案。在风险容忍度最低的领域,确保可靠的预测是必不可少的。本研究介绍了expmax,一个基于XAI原理的新分类器,使用卷积神经网络(CNN)架构设计用于多类分类问题。与传统的softmax相比,expmax的关键优势在于它能够评估模型对目标显著特征的关注,而不是被背景中不相关的模式分散注意力。这个特性允许expmax增加弹性,特别是在具有对抗性样本的场景中,传统分类器可能无法正确识别目标类。expmax背后的方法是基于使用SHapley加性解释(SHAP)算法将从训练数据集中提取的特征与回归量拟合,以及目标掩码区域检测算法。通过使用基于shap的提取特征,expmax减少了对抗性输入引入的扰动的脆弱性。在MTARSI数据集上验证了该方法在遥感图像中的飞机识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

XAI-Driven Resilient Image Classification in the Presence of Adversarial Perturbations

XAI-Driven Resilient Image Classification in the Presence of Adversarial Perturbations

Deep learning (DL) architectures, although being employed in widespread applications, often raise concerns about their trustworthiness due to their opacity in their decision-making processes. Explainable AI (XAI) emerges as a promising solution to mitigate these concerns by providing interpretable rationales for DL network outputs. In domains where risk tolerance is minimal, ensuring trustworthy predictions is essential. This study introduces expmax, a new classifier rooted in XAI principles, designed for multiclass classification problems using convolutional neural network (CNN) architectures. The key strength of expmax, compared to the conventional softmax, lies in its ability to evaluate the model's focus on salient features of targets rather than being distracted by unrelated patterns from the background. This characteristic allows expmax for increased resilience, especially in scenarios with adversarial samples, where conventional classifiers may fail to correctly recognise the target class. The methodology behind expmax is based on fitting a regressor with features that are extracted from the training dataset using the SHapley Additive exPlanations (SHAP) algorithm, along with a target mask area detection algorithm. By using the SHAP-based extracted features, expmax reduces vulnerabilities to perturbations introduced by adversarial inputs. The method is validated on the MTARSI dataset for aircraft recognition in remote sensing images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信