中心流形形式级数展开的改进Gevrey-1估计

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Kristian Uldall Kristiansen
{"title":"中心流形形式级数展开的改进Gevrey-1估计","authors":"Kristian Uldall Kristiansen","doi":"10.1111/sapm.70063","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the coefficients <span></span><math>\n <semantics>\n <msub>\n <mi>ϕ</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\phi _n$</annotation>\n </semantics></math> of the formal series expansions <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <msub>\n <mi>ϕ</mi>\n <mi>n</mi>\n </msub>\n <msup>\n <mi>x</mi>\n <mi>n</mi>\n </msup>\n <mo>∈</mo>\n <mi>x</mi>\n <mi>C</mi>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\sum _{n=1}^\\infty \\phi _n x^n\\in x\\mathbb {C}[[x]]$</annotation>\n </semantics></math> of center manifolds of planar analytic saddle-nodes grow like <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Gamma (n+a)$</annotation>\n </semantics></math> (after rescaling <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>) as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n\\rightarrow \\infty$</annotation>\n </semantics></math>. Here, the quantity <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> is the formal analytic invariant associated with the saddle-node (following the work of Martinet and Ramis). This growth property of <span></span><math>\n <semantics>\n <msub>\n <mi>ϕ</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\phi _n$</annotation>\n </semantics></math>, which is optimal, was recently (2024) described for a restricted class of nonlinearities by the present author in collaboration with Szmolyan. This joint work was in turn inspired by the work of Merle, Raphaël, Rodnianski, and Szeftel (2022), which described the growth of the coefficients for a system related to self-similar solutions of the compressible Euler. In the present paper, we combine the previous approaches with a Borel–Laplace approach. Specifically, we adapt the Banach norm of Bonckaert and De Maesschalck (2008) in order to capture the singularity in the complex plane. Finally, we apply the result to a family of Riccati equations and obtain a partial classification of the analytic center manifolds.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70063","citationCount":"0","resultStr":"{\"title\":\"Improved Gevrey-1 Estimates of Formal Series Expansions of Center Manifolds\",\"authors\":\"Kristian Uldall Kristiansen\",\"doi\":\"10.1111/sapm.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that the coefficients <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\phi _n$</annotation>\\n </semantics></math> of the formal series expansions <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>∞</mi>\\n </msubsup>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>n</mi>\\n </msub>\\n <msup>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∈</mo>\\n <mi>x</mi>\\n <mi>C</mi>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mo>[</mo>\\n <mi>x</mi>\\n <mo>]</mo>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\sum _{n=1}^\\\\infty \\\\phi _n x^n\\\\in x\\\\mathbb {C}[[x]]$</annotation>\\n </semantics></math> of center manifolds of planar analytic saddle-nodes grow like <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Gamma (n+a)$</annotation>\\n </semantics></math> (after rescaling <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>) as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$n\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. Here, the quantity <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math> is the formal analytic invariant associated with the saddle-node (following the work of Martinet and Ramis). This growth property of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\phi _n$</annotation>\\n </semantics></math>, which is optimal, was recently (2024) described for a restricted class of nonlinearities by the present author in collaboration with Szmolyan. This joint work was in turn inspired by the work of Merle, Raphaël, Rodnianski, and Szeftel (2022), which described the growth of the coefficients for a system related to self-similar solutions of the compressible Euler. In the present paper, we combine the previous approaches with a Borel–Laplace approach. Specifically, we adapt the Banach norm of Bonckaert and De Maesschalck (2008) in order to capture the singularity in the complex plane. Finally, we apply the result to a family of Riccati equations and obtain a partial classification of the analytic center manifolds.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了形式级数展开∑n = 1∞的系数φ n $\phi _n$φ n x n∈x C [[x]] $\sum _{n=1}^\infty \phi _n x^n\in x\mathbb {C}[[x]]$平面解析鞍节点的中心流形生长为Γ (n + a) $\Gamma (n+a)$(重新缩放x $x$后)为n→∞$n\rightarrow \infty$。在这里,量a $a$是与鞍节点相关的形式解析不变量(遵循Martinet和Ramis的工作)。这种最优的ϕ n $\phi _n$的增长性质最近(2024)由本文作者与Szmolyan合作描述了一类受限的非线性。这项联合工作反过来又受到了Merle, Raphaël, Rodnianski和Szeftel(2022)的工作的启发,该工作描述了与可压缩欧拉自相似解相关的系统系数的增长。在本文中,我们将前面的方法与Borel-Laplace方法结合起来。具体来说,我们采用Bonckaert和De Maesschalck(2008)的Banach范数来捕捉复平面中的奇点。最后,我们将结果应用于一类Riccati方程,得到了解析中心流形的部分分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Gevrey-1 Estimates of Formal Series Expansions of Center Manifolds

In this paper, we show that the coefficients ϕ n $\phi _n$ of the formal series expansions n = 1 ϕ n x n x C [ [ x ] ] $\sum _{n=1}^\infty \phi _n x^n\in x\mathbb {C}[[x]]$ of center manifolds of planar analytic saddle-nodes grow like Γ ( n + a ) $\Gamma (n+a)$ (after rescaling x $x$ ) as n $n\rightarrow \infty$ . Here, the quantity a $a$ is the formal analytic invariant associated with the saddle-node (following the work of Martinet and Ramis). This growth property of ϕ n $\phi _n$ , which is optimal, was recently (2024) described for a restricted class of nonlinearities by the present author in collaboration with Szmolyan. This joint work was in turn inspired by the work of Merle, Raphaël, Rodnianski, and Szeftel (2022), which described the growth of the coefficients for a system related to self-similar solutions of the compressible Euler. In the present paper, we combine the previous approaches with a Borel–Laplace approach. Specifically, we adapt the Banach norm of Bonckaert and De Maesschalck (2008) in order to capture the singularity in the complex plane. Finally, we apply the result to a family of Riccati equations and obtain a partial classification of the analytic center manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信