{"title":"有机分子束沉积法制备超薄液晶薄膜","authors":"Anna Drzewicz;Michael Wübbenhorst","doi":"10.1109/TDEI.2025.3546175","DOIUrl":null,"url":null,"abstract":"The miniaturization of devices causes an increase in scientists’ interest in the possibility of creating and characterizing ultrathin layers of liquid crystals. Using organic molecular beam deposition (OMBD), organic thin layers are produced in ultrahigh vacuum by single molecule deposition on a cold substrate. In this article, we verify the possibility of creating thin films of liquid crystal below the glass transition temperature by the OMBD method. We also investigated the effect of various OMBD deposition parameters on the layer thickness and the <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-relaxation dynamics of the compound under study. Some striking differences in relaxation dynamics related to glass-forming behavior are observed in ultrathin films compared to the bulk. We show that real time, in situ dielectric relaxation spectroscopy can be successfully applied to study the dynamic glass transition in geometric confinement, not only for simple glass-forming liquids but also for glass-forming liquid crystals using OMBD.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 3","pages":"1631-1638"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin Films of Liquid Crystal Obtained via Organic Molecular Beam Deposition Method\",\"authors\":\"Anna Drzewicz;Michael Wübbenhorst\",\"doi\":\"10.1109/TDEI.2025.3546175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miniaturization of devices causes an increase in scientists’ interest in the possibility of creating and characterizing ultrathin layers of liquid crystals. Using organic molecular beam deposition (OMBD), organic thin layers are produced in ultrahigh vacuum by single molecule deposition on a cold substrate. In this article, we verify the possibility of creating thin films of liquid crystal below the glass transition temperature by the OMBD method. We also investigated the effect of various OMBD deposition parameters on the layer thickness and the <inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>-relaxation dynamics of the compound under study. Some striking differences in relaxation dynamics related to glass-forming behavior are observed in ultrathin films compared to the bulk. We show that real time, in situ dielectric relaxation spectroscopy can be successfully applied to study the dynamic glass transition in geometric confinement, not only for simple glass-forming liquids but also for glass-forming liquid crystals using OMBD.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 3\",\"pages\":\"1631-1638\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904916/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10904916/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultrathin Films of Liquid Crystal Obtained via Organic Molecular Beam Deposition Method
The miniaturization of devices causes an increase in scientists’ interest in the possibility of creating and characterizing ultrathin layers of liquid crystals. Using organic molecular beam deposition (OMBD), organic thin layers are produced in ultrahigh vacuum by single molecule deposition on a cold substrate. In this article, we verify the possibility of creating thin films of liquid crystal below the glass transition temperature by the OMBD method. We also investigated the effect of various OMBD deposition parameters on the layer thickness and the $\alpha $ -relaxation dynamics of the compound under study. Some striking differences in relaxation dynamics related to glass-forming behavior are observed in ultrathin films compared to the bulk. We show that real time, in situ dielectric relaxation spectroscopy can be successfully applied to study the dynamic glass transition in geometric confinement, not only for simple glass-forming liquids but also for glass-forming liquid crystals using OMBD.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.